

Rue de l'Europe 57 370 PHALSBOURG Tél. : 03 87 23 12 39 Fax : 03 87 24 26 97





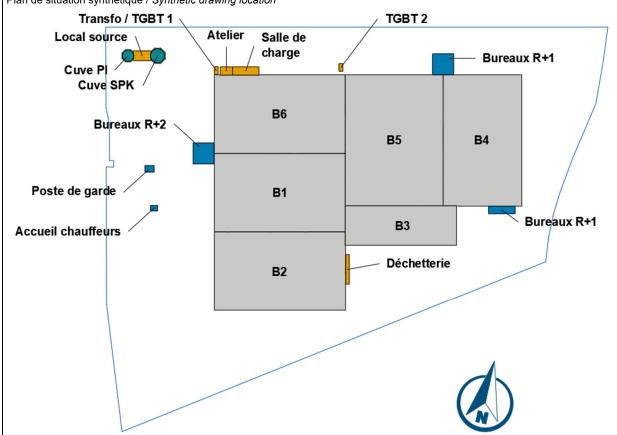
Rue de l'Europe 57 370 PHALSBOURG Tél.: 03 87 23 12 39 Fax: 03 87 24 26 97

Nom de la plate-forme / Name of platform

# **VER • VERNOUILLET**

Rue André Marie Ampère • ZAC Porte Sud • 28 500 VERNOUILLET

Tranche / Phase


Contenu de la tranche / Content of the phase

Entrepôts 1 à 6 · Bureaux B1-B6 (R+2) · Bureaux B4-B5 (R+1)

Local sprinkler  $\cdot$  Locaux techniques  $\cdot$  Poste de garde  $\cdot$  Accueil chauffeurs

Parkings PL & VL · Bassin de rétention · Bassin d'infiltration

Plan de situation synthétique / Synthetic drawing location



# Note hydraulique

|                   | 5                        | 5                           |                                                                 |
|-------------------|--------------------------|-----------------------------|-----------------------------------------------------------------|
| Indice /<br>Index | Date de / of<br>révision | Rédigé par /<br>realized by | Objet de la modification / Purpose of the change                |
| Ind.A             | 26/09/2022               | C. GRASSER                  | Première édition                                                |
| Ind.B             | 19/10/2022               | C. GRASSER                  | Modif. Suite aux remarques de S.K.                              |
| Ind.C             | 21/12/2022               | C. GRASSER                  | Modif. Suite au nouveau PLU + mise à jour surf .                |
| Ind.D             | 30/03/2023               | C. GRASSER                  | Modif. à la demande de la ComCom du Pays de Dreux du 27/01/2023 |
| Ind.E             | 05/05/2023               | C. GRASSER                  | Modif. à la demande de complément ICPE et PC                    |



## **SOMMAIRE**

| <u>1</u> | PREAMBULE ET RESUME NON TECHNIQUE                                              | <u>6</u>  |
|----------|--------------------------------------------------------------------------------|-----------|
|          |                                                                                |           |
| 1.1      | DESCRIPTION DU PROJET                                                          | 6         |
| 1.2      |                                                                                |           |
| 1.3      |                                                                                |           |
| 1.4      |                                                                                |           |
|          |                                                                                |           |
| 2        | RECAPITULATIF DES INVESTIGATIONS                                               | 10        |
| <u> </u> | RECAPITOLATIF DES INVESTIGATIONS                                               | 10        |
|          |                                                                                |           |
| 2.1      |                                                                                |           |
| 2.2      |                                                                                |           |
| 2.3      |                                                                                |           |
| 2.4      | ESSAIS DE PERMEABILITE AU DROIT DU SITE                                        | 16        |
|          |                                                                                |           |
| <u>3</u> | DIAGNOSTIC DETAILLE DE LA SITUATION ACTUELLE                                   | 18        |
|          |                                                                                |           |
| 3.1      | CONTEXTE TOPOGRAPHIQUE                                                         | 18        |
| 3.2      | CONTEXTE METEOROLOGIQUE                                                        | 19        |
|          |                                                                                |           |
| 4        | PRESCRIPTIONS REGLEMENTAIRES ET TECHNIQUES LIEES A LA GESTION DES EAUX PLUVIAL | FS 21     |
| -        | THEODIN HONO REGERMENTANCE ET TECHNIQUES EILES TET GESTION DES ETION EO VINC   |           |
| 4.1      | Prescriptions du SDAGE 2022-2027                                               | 24        |
| 4.1      |                                                                                |           |
| 4.2      |                                                                                |           |
| 4.2      |                                                                                |           |
| 4.2      | .2 FRINCIPE GENERAL DE GESTION DES EAUX PLOVIALES                              | 23        |
| _        |                                                                                |           |
| <u>5</u> | DIMENSIONNEMENT DES OUVRAGES DE RETENTION                                      | <u>25</u> |
|          |                                                                                |           |
| 5.1      | HYPOTHESES DE DIMENSIONNEMENT                                                  | 25        |
| 5.1      | .1 DIMENSIONNEMENT                                                             | 25        |
| 5.1      | .2 Pluie de reference et debit de fuite                                        | 5         |
| 5.1      |                                                                                |           |
| 5.2      | ·                                                                              |           |
| 5.3      |                                                                                |           |
| 5.3      | ·                                                                              |           |
| 5.3      | ·                                                                              |           |
| 5.4      |                                                                                |           |
| 5.5      |                                                                                |           |
| 5.6      |                                                                                |           |
| 5.6      |                                                                                |           |
| 5.6      |                                                                                |           |
| 5.6      | .3 Pluviometrie                                                                | 28        |



| <u>6</u>  | GESTION DE LA PLUIE COURANTE                | 30         |
|-----------|---------------------------------------------|------------|
|           |                                             |            |
| 6.1       | Principe General                            | 30         |
| 6.2       |                                             |            |
| 6.3       | · · · · · · · · · · · · · · · · · · ·       |            |
|           |                                             |            |
| 7         | GESTION DE LA PLUIE D'OCCURRENCE CENTENNALE | 32         |
| _         |                                             |            |
| 7.1       | Principe general                            | 32         |
| 7.2       |                                             |            |
| 7.2       |                                             |            |
| 7.2       |                                             | _          |
| 7.3       | ·                                           |            |
| 7.3       | , ,                                         |            |
| 7.3       |                                             |            |
| 7.4       |                                             |            |
|           |                                             |            |
| 8         | SEPARATEUR A HYDROCARBURES                  | 35         |
| <u>o</u>  | JEF ANATEON A TITOROCARDONES                | <u></u>    |
| 8.1       | HYPOTHESE DE CALCUL                         | 25         |
| 8.2       |                                             |            |
| 8.3       |                                             |            |
| 0.5       | RECOMMANDATION                              |            |
| _         |                                             |            |
| <u>9</u>  | DIMENSIONNEMENT DU VOLUME DE LA D9A         | <u>37</u>  |
|           |                                             |            |
| <u>10</u> | CONCLUSION                                  | 3 <u>8</u> |
|           |                                             |            |
| 11        | ANNEXES                                     | 39         |



# **TABLE DES FIGURES**

| FIGURE 2: PLAN CADASTRAL DU SITE                                                                                                                                                                                                                                                                                        | 7                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                         |                                                 |
| FIGURE 3 : PLAN DE MASSE                                                                                                                                                                                                                                                                                                |                                                 |
| FIGURE 4 : PLAN D'IMPLANTATION DES SONDAGES                                                                                                                                                                                                                                                                             |                                                 |
| FIGURE 5 : PLAN D'IMPLANTATION DES PIEZOMETRES ET SENS D'ECOULEMENT INTERPRETE                                                                                                                                                                                                                                          |                                                 |
| FIGURE 6 : PLAN D'IMPLANTATION DES PIEZOMETRES ET SENS D'ECOULEMENT INTERPRETE                                                                                                                                                                                                                                          |                                                 |
| FIGURE 7 : PROPOSITION D'IMPLANTATION DES PIEZOMETRES                                                                                                                                                                                                                                                                   |                                                 |
| FIGURE 8 : SCHEMA DE PRINCIPE DE COUPE DE PIEZOMETRE                                                                                                                                                                                                                                                                    |                                                 |
| FIGURE 9 : TOPOGRAPHIE DU SITE                                                                                                                                                                                                                                                                                          |                                                 |
| FIGURE 10 : BASSINS VERSANT HYDRAULIQUE DE LA MODIFICATION DU DLE D'AOUT 2010                                                                                                                                                                                                                                           | 19                                              |
| FIGURE 11 : LOCALISATION DE LA STATION METEOROLOGIQUE DE REFERENCE ET REPARTITION DES                                                                                                                                                                                                                                   |                                                 |
| PRECIPITATIONS ANNUELLES DE LA ZONE D'ETUDE (SOURCE : METEO FRANCE)                                                                                                                                                                                                                                                     |                                                 |
| FIGURE 12 : PLUVIOMETRIE MOYENNE ANNUELLE                                                                                                                                                                                                                                                                               |                                                 |
| FIGURE 13 : PRINCIPE DE GESTION DES EAUX PLUVIALES                                                                                                                                                                                                                                                                      |                                                 |
| FIGURE 14 : BASSIN VERSANT AMONT INTERCEPTE PAR L'EMPRISE DU PROJET                                                                                                                                                                                                                                                     |                                                 |
| FIGURE 15 : PLUVIOGRAMMES DES PLUIES DE PROJET                                                                                                                                                                                                                                                                          |                                                 |
| FIGURE 16 : SCHEMA DE PRINCIPE DU BASSIN D'INFILTRATION/RETENTION DES EAUX DE TOITURE B01                                                                                                                                                                                                                               |                                                 |
| FIGURE 17 : SCHEMA DE PRINCIPE DU BASSIN D'INFILTRATION DES EAUX DE VOIRIE B02                                                                                                                                                                                                                                          |                                                 |
| FIGURE 18 : SCHEMA DE PRINCIPE DU BASSIN DE RETENTION BO3                                                                                                                                                                                                                                                               |                                                 |
| FIGURE 19 : SCHEMA DE PRINCIPE SEPARATEUR A HYDROCARBURES - DEBOURBEURFIGURE 20 : DIMENSIONNEMENT DE LA D9A                                                                                                                                                                                                             |                                                 |
|                                                                                                                                                                                                                                                                                                                         |                                                 |
|                                                                                                                                                                                                                                                                                                                         |                                                 |
| TABLE DES TABLEAUX                                                                                                                                                                                                                                                                                                      |                                                 |
|                                                                                                                                                                                                                                                                                                                         | 11                                              |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE<br>TABLEAU 2 : NIVEAUX CARACTERISTIQUES ESTIMES DE LA NAPPE                                                                                                                                                                                  | 11                                              |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE<br>TABLEAU 2 : NIVEAUX CARACTERISTIQUES ESTIMES DE LA NAPPE<br>TABLEAU 3 : CARACTERISTIQUES DES ESSAIS DE PERMEABILITE TYPE NASBERG « ANNEXE 1 : PV DES ESSAIS                                                                               | 11<br>DE                                        |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE<br>TABLEAU 2 : NIVEAUX CARACTERISTIQUES ESTIMES DE LA NAPPE<br>TABLEAU 3 : CARACTERISTIQUES DES ESSAIS DE PERMEABILITE TYPE NASBERG « ANNEXE 1 : PV DES ESSAIS<br>PERMEABILITE EL1 A EL4 TYPE NASBERG ET LEFANC DE L'ENTREPRISE "FONDASOL" » | 11<br>DE<br>16                                  |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE<br>TABLEAU 2 : NIVEAUX CARACTERISTIQUES ESTIMES DE LA NAPPE<br>TABLEAU 3 : CARACTERISTIQUES DES ESSAIS DE PERMEABILITE TYPE NASBERG « ANNEXE 1 : PV DES ESSAIS<br>PERMEABILITE EL1 A EL4 TYPE NASBERG ET LEFANC DE L'ENTREPRISE "FONDASOL" » | 11<br>DE<br>16<br>DE                            |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11<br>DE<br>16<br>DE<br>16                      |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11<br>DE<br>16<br>DE<br>16<br>25                |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11<br>DE<br>16<br>DE<br>16<br>25                |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11<br>DE 16<br>DE 16<br>25<br>27                |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 b DE 16 DE 16 25 27 27                       |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11<br>5 DE<br>16<br>DE<br>16<br>25<br>27<br>27  |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 6 DE 16 DE 16 25 27 27 27 27                 |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 DE 16 DE 16 25 27 27 27 27 27                |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 5 DE 16 DE 16 25 27 27 27 27 27 30           |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 DE 16 DE 16 27 27 27 27 27 30 URE            |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 DE 16 DE 25 27 27 27 E 28 28 30 URE 30       |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 DE 16 DE 25 27 27 27 E 28 28 30 URE 30       |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 i DE 16 DE 16 27 27 27 E 28 29 30 URE 30 31  |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 i DE 16 DE 16 27 27 27 E 28 29 30 URE 30 31  |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 G DE 16 DE 16 27 27 27 29 30 URE 30 31       |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 G DE 16 DE 16 27 27 27 29 30 URE 30 31       |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 i DE 16 DE 16 27 27 27 27 30 URE 30 31 32    |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 i DE 16 DE 16 27 27 27 27 30 URE 30 31 32    |
| TABLEAU 1: CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                               | 11 i DE 16 DE 16 27 27 27 27 30 URE 30 31 32 32 |
| TABLEAU 1 : CARACTERISTIQUES DES PIEZOMETRES MIS EN PLACE AU DROIT DU SITE                                                                                                                                                                                                                                              | 11 G DE 16 DE 16 27 27 27 29 30 URE 30 31 32 33 |



## **TABLE DES ANNEXES**

| ANNEXE 1: PV DES ESSAIS DE PERMEABILITE EL1 A EL4 TYPE NASBERG ET LEFANC DE L'ENTREP | RISE        |
|--------------------------------------------------------------------------------------|-------------|
| "FONDASOL"                                                                           | 45          |
| ANNEXE 2 : PV DES ESSAIS DE PERMEABILITE MAT1 A MAT3 TYPE MATSUO DE L'ENTREPRISE "F  | ONDASOL" 47 |
| ANNEXE 3 · PROFILS ALTIMETRIQUES - SOURCE "GEOPORTALL"                               | 49          |

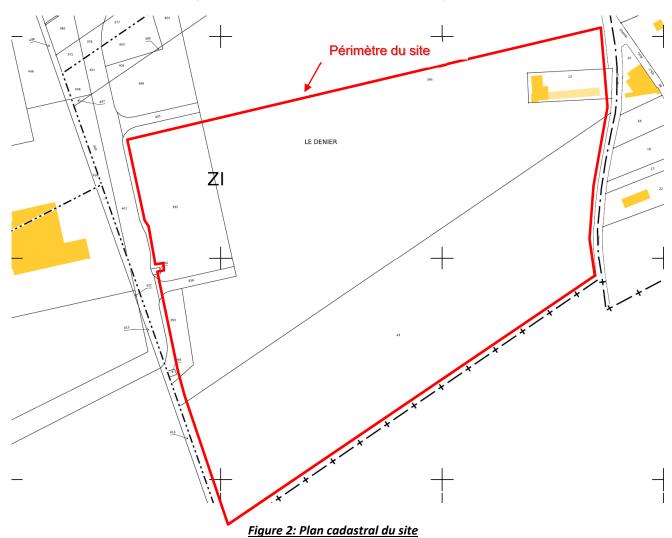


## 1 PREAMBULE ET RESUME NON TECHNIQUE

## 1.1 Description du projet

Le programme consiste en la construction d'une plate-forme logistique sur une parcelle de 11,49 ha pour le compte de BATI LOGISTIC, Maître d'Ouvrage. L'implantation de la plate-forme est prévue dans la ZAC Porte Sud, rue André Marie Ampère sur la commune de Vernouillet. Elle est à proximité de la N12 sortie vers N154 Chartres (Jouy-en-Josas → Brest) au niveau des parcelles référencées ZI n° 23, 24, 391, 393, 394, 395 et 456.

Les travaux consistent en la création d'un bâtiment logistique destiné à recevoir des cellules de stockage et des voiries d'accès.


## Le projet est délimité :

- Au Nord par les parcelles de la ZAC et au Sud par des champs cultivés,
- A l'Ouest par la ZAC Porte Sud,
- A l'Est par le chemin de Blainville et par une zone comportant un transformateur électrique.



Figure 1: Vue aérienne du site





| Références de la parcelle 000 ZI 391                                    |                                                                      |
|-------------------------------------------------------------------------|----------------------------------------------------------------------|
| Référence cadastrale de la parcelle<br>Contenance cadastrale<br>Adresse | 000 ZI 391<br>10 352 mètres carrés<br>LE DENIER<br>28500 VERNOUILLET |
| Références de la parcelle 000 ZI 393                                    |                                                                      |
| Référence cadastrale de la parcelle<br>Contenance cadastrale<br>Adresse | 000 ZI 393<br>1 647 mètres carrés<br>LE DENIER<br>28500 VERNOUILLET  |
| Références de la parcelle 000 ZI 394                                    |                                                                      |
| Référence cadastrale de la parcelle<br>Contenance cadastrale<br>Adresse | 000 ZI 394 38 mètres carrés LE DENIER 28500 VERNOUILLET              |
| Références de la parcelle 000 ZI 24                                     |                                                                      |
| Référence cadastrale de la parcelle<br>Contenance cadastrale<br>Adresse | 000 ZI 24 51 380 mètres carrés LE DENIER 28500 VERNOUILLET           |



000 ZI 23

Référence cadastrale de la parcelle

Contenance cadastrale 2 000 mètres carrés

Adresse LE DENIER

Adresse 28500 VERNOUILLET
CHE DE BLAINVILLE
28500 VERNOUILLET

Références de la parcelle 000 ZI 456

Référence cadastrale de la parcelle 000 ZI 456

Contenance cadastrale 700 mètres carrés
Adresse LE DENIER

28500 VERNOUILLET

Références de la parcelle 000 ZI 395

Référence cadastrale de la parcelle 000 ZI 395

Contenance cadastrale 113 668 mètres carrés

Adresse LE DENIER

28500 VERNOUILLET

Références de la parcelle 000 ZI 392

Référence cadastrale de la parcelle 000 ZI 392

Contenance cadastrale 44 mètres carrés
Adresse LE DENIER

28500 VERNOUILLET

#### 1.2 Documents de base

La présente étude est fondée sur les documents ci-dessous :

- Le plan de masse du projet réalisé le 06/12/2022 : VER\_AVP\_PLAN MASSE (PC) 19.12.2022 JK.dwg https://ngconcept.app.box.com/file/1094760144097
- La note de calcul du volume D9/D9A : VER\_CALCULS\_D9\_D9A\_édition juin 2020\_IndC\_13.12.2022.xlsx https://ngconcept.app.box.com/file/1089539777553
- Le SDAGE\_ bassin de la Seine et des cours d'eau côtiers normands\_ 2022 2027 : SDAGE Loire-Bretagne.pdf
   <a href="https://ngconcept.app.box.com/folder/151143191744">https://ngconcept.app.box.com/folder/151143191744</a>
- Dossier de porter à connaissance du DLE de 08/2010 : https://ngconcept.app.box.com/file/784584223259
- PLU du 17 mars 2021 : https://ngconcept.app.box.com/folder/184546354595
- Etude hydrogéologique avec estimation des niveaux caractéristiques de la nappe selon la norme DTU 14.1. (Mission G5): Etude NPHE après suivi 2 mois\_24.03.2023\_FONDASOL 72GT.19.0083-DTHY-indB.pdf

https://ngconcept.app.box.com/file/1172837522745



## 1.3 Plan d'aménagement

BATILOGISTIC envisage la construction d'une plateforme logistique avec la réalisation de 6 cellules, de bureaux, de locaux techniques et d'un poste de garde pour une surface d'activités  $\approx 45000 \text{ m}^2$ .

La construction des bâtiments d'activités s'accompagnera de la réalisation d'espaces de stationnement pour les poids-lourds, les véhicules légers et de la réalisation d'un bassin de rétention étanche (BO3), d'un bassin d'infiltration (BO2) et d'un bassin d'infiltration/rétention (BO1).



Figure 3: Plan de masse

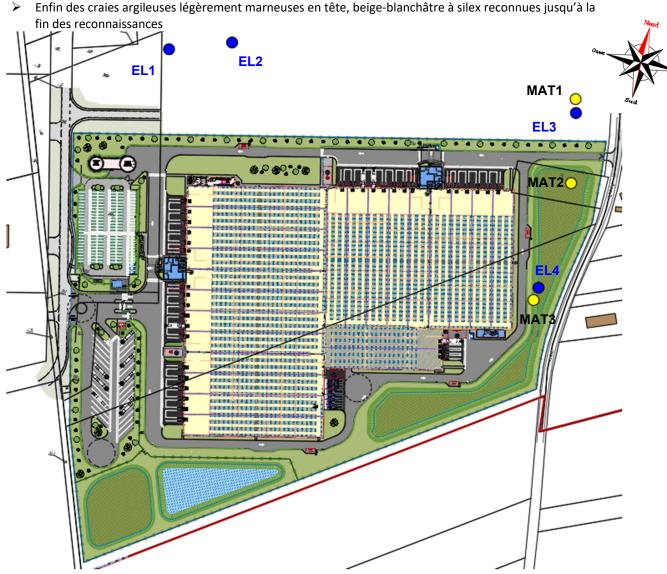
## 1.4 Objectif de la mission

La présente note hydraulique d'assainissement pluvial a pour objectif de dimensionner les ouvrages de gestion des eaux pluviales :

- Calculs des débits de ruissellement,
- L'estimation des volumes à stocker en fonction de la pluie de référence retenue.



## 2 RECAPITULATIF DES INVESTIGATIONS


#### 2.1 Préambule

Des investigations ont été réalisées par l'entreprise Fondasol en février 2020 et sont récapitulées ci-dessous.

## 2.2 Géologie au droit du site

D'après les coupes géologiques des sondages effectués par Fondasol, la lithologie au droit du site est la suivante :

- 0,4m à 1,4m d'épaisseur de terrains superficiels de couverture composés de :
  - Terre végétale limoneuse brun clair sur 0,3 à 0,6m d'épaisseur,
  - Limons marron légèrement graveleux jusqu'à 0,8 à 0,9m de profondeur/TA,
  - Remblais argilo-graveleux jusque 1,1 à 1,4m de profondeur/TA.
- Puis des argiles plus ou moins graveleuses marron-ocre et brun-orangé à brun-clair, parfois plastiques au toucher, renfermant graviers, cailloux et fragments de silex reconnues jusqu'à 3,0 à 8,0m de profondeur





## 2.3 Hydrogéologie au droit du site

Dans le cadre de l'étude de Fondasol réf. PR.72GT.19.0083 et datée du 14/10/2019, 3 piézomètres ont été mis en place au droit du site afin de mesurer le niveau piézométrique de la nappe libre :

| Sondages             | PR9 - PZI                                            | PR10 – PZ2                                           | PR11 – PZ3                                           |
|----------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Cote NGF (m)         | 132,5                                                | 131,9                                                | 131,8                                                |
| Profondeur<br>(m/TA) | 15                                                   | 15                                                   | 15                                                   |
| Crépines             | 3,0m/TA → 15m/TA                                     | 3,0m/TA → 14m/TA                                     | 3,0m/TA → 14,8m/TA                                   |
| Aquifère capté       | Craie                                                | Craie                                                | Craie                                                |
| Méthode de<br>forage | Tarière continue Ø63mm<br>+ Réalésage tricône Ø115mm | Tarière continue Ø63mm<br>+ Réalésage tricône Ø115mm | Tarière continue Ø63mm<br>+ Réalésage tricône Ø115mm |

<u>Tableau 1 : Caractéristiques des piézomètres mis en place au droit du site</u>

Les résultats des niveaux d'eau relevés au droit des piézométriques sont répertoriés ci-dessous :

- > En date du 18/12/2019 :
  - PR9-PZ1: -8,63m / TA soit 123,88m NGF,
  - PR10-PZ2: -8,46m / TA soit 123,44m NGF,
  - PR11-PZ3: -7,23m / TA soit 124,57m NGF.
- > En date du 26/02/2020 :
  - PR9-PZ1: -6,91m / TA soit 125,60m NGF,
  - PR10-PZ2: -8,10m / TA soit 123,80m NGF,
  - PR11-PZ3: -6,80m / TA soit 125,00m NGF.

Les niveaux d'eau au droit du site sont compris entre 6,9 et 8,63m/TA, soit entre 123,6 et 124,6m NGF, à partir des données des 2 campagnes de mesure.

Le 28/12/2019, la nappe de la Craie d'écoulerait vers le nord-nord alors que le 26/02/2020, elle s'écoulerait en direction de l'est. Par conséquent, le sens d'écoulement de la nappe de la Craie est variable en fonction de la période de mesure.

Les 3 piézomètres ont été comblés dans les règles de l'art par un technicien de Fondasol le 26/02/2020. Avant le rebouchage, les sondes piézométriques automatiques installées dans les piézomètres ont été retirées et le niveau d'eau a été mesuré dans les 3 ouvrages :

- PR9-PZ1:-6,92m / TA soit 125,58m NGF,
- PR10-PZ2: -5,10m / TA soit 126,80m NGF,
- PR11-PZ3: -5,35m / TA soit 126,45m NGF.

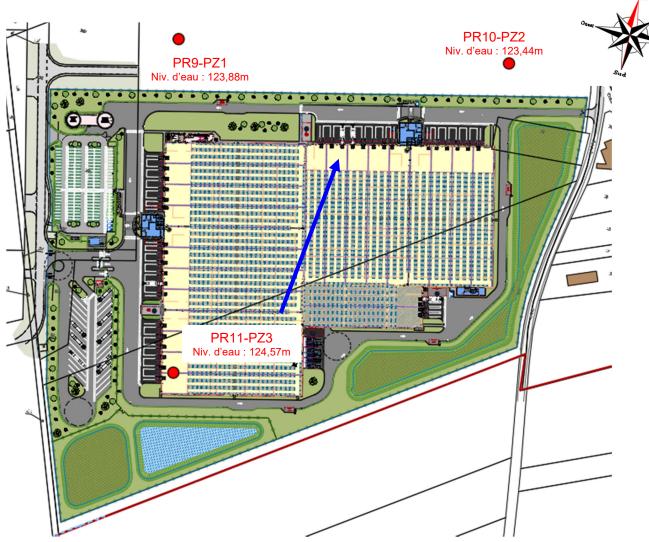

|            | EB                 | EH                 | EE                 |
|------------|--------------------|--------------------|--------------------|
| PR11 – PZ3 | -10.90 m/TA        | -4.25 m/TA         | -3.25 m/TA         |
| TINII 123  | (soit 120,90m NGF) | (soit 127,55m NGF) | (soit 128,55m NGF) |

Tableau 2 : Niveaux caractéristiques estimés de la nappe

Avec les relevés piézométriques effectués sur PR11-PZ3, l'entreprise Fondasol (après un suivi de 2 mois) retient comme estimation de la nappe les données du « Tableau 2 : Niveaux caractéristiques estimés de la nappe » avec :



- EB: le niveau des plus basses eaux qui donne les actions permanentes;
- ➤ EH : le niveau des Hautes Eaux qui correspond à la cote décennale (occurrence de 1/10 tous les ans) ;
- EE : le niveau exceptionnel et conventionnel de l'eau qui correspond au niveau des plus hautes eaux connues et/ou prévisibles



<u>Figure 5 : Plan d'implantation des piézomètres et sens d'écoulement interprété</u> de la nappe à partir des niveaux mesurés le 18/12/19



Rue de l'Europe – 57 370 PHALSBOURG - Tél : 03.87.23.12.39 - Télécopia : 03.87.24.26.97

PR10-PZ2
Niv. d'eau : 125,60m

PR11-PZ3
Niv. d'eau : 125,00m

Figure 6 : Plan d'implantation des piézomètres et sens d'écoulement interprété de la nappe à partir des niveaux mesurés le 26/02/20



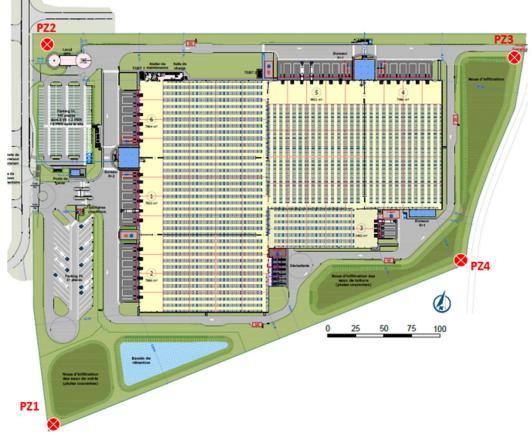



Figure 7 : Proposition d'implantation des piézomètres

Au vu de la variation du sens d'écoulement de la nappe, un positionnement des piézomètres à chaque coin du terrain est proposé C.f. «Figure 7 : Proposition d'implantation des piézomètres».

Ceci permet de systématiquement avoir deux mesures en aval. Ils seront également implantés hors de la zone de l'ancienne scierie et hors de toute voirie ou noue d'infiltration ; ceci afin d'éviter tout risque de pollution (en situation normale ou en cas d'incendie).

A l'aide de ces piézomètres, nous pourrons faire un suivi de nappe pendant une durée d'environ 1 an avant le démarrage des travaux, puis ils seront maintenus durant l'exploitation du site afin d'identifier une éventuelle pollution.

Ils feront 15 m de profondeur et seront permanents. Ils auront les caractéristiques suivantes (les mêmes que celles proposées par l'entreprise Fondasol – spécialiste dans le domaine – dans l'annexe 13) :

- Forage en diamètre adapté,
- Equipement en PVC plein de Ø52/60 mm de 0,0 m à 3,0 m de profondeur/TN (minimum),
- Equipement en PVC crépiné de Ø52/60 mm de 3,0 m de profondeur/TN jusqu'au fond, fini par un bouchon de fond,
- Mise en place d'un massif filtrant en gravillons 2/4 mm,
- Cimentation de l'espace annulaire avec bouchon de sobranite,
- Equipement de la tête de forage par un massif de scellement en béton et un capot métallique cadenassé hors sol.



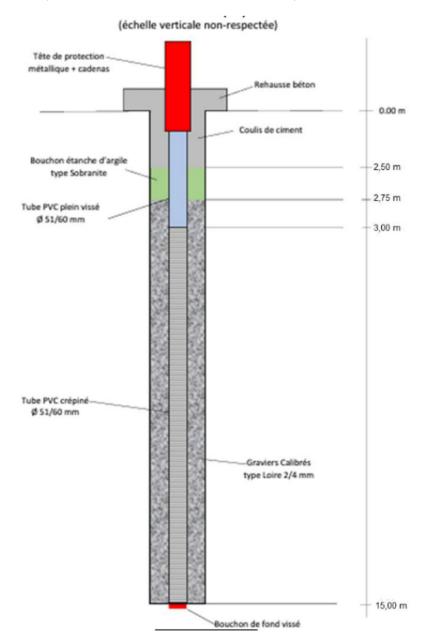



Figure 8 : Schéma de principe de coupe de piézomètre

Des mesures seront réalisées à intervalles réguliers. Le programme analytique sera le même qu'à l'état initial :

- Les hydrocarbures totaux (HCT) fractions C10-C40;
- Les hydrocarbures aromatiques polycycliques (HAP), y compris naphtalène ;
- Les 12 métaux (ETM) : antimoine, arsenic, baryum, cadmium, chrome, cuivre, mercure, molybdène, zinc, nickel, plomb, selenium ;
- Les solvants mono-aromatiques (BTEX) : benzène, toluène, éthylbenzène et xylènes ;
- Les composés organo-halogénés volatils (COHV);
- Le rapport DBO5/DCO;
- Les paramètres physico-chimiques : pH, température, potentiel d'oxydo-réduction, conductivité

;



- Les éléments physico-chimiques : nitrate, sulfate, chlorure, calcium, magnésium, potassium, sodium, fer total, phosphore et phosphate ;

Tout dépassement dans les résultats mènera à une recherche de cause. Un bureau d'études spécialisé sera impliqué pour mesurer la contamination, chercher la cause de cette dernière et proposer un plan d'action. La DREAL sera prévenue.

### 2.4 Essais de perméabilité au droit du site

Lors d'une campagne de mesures les 08/07/2019 et 29/08/2019, l'entreprise Fondasol a réalisé 5 essais d'infiltration type NASBERG en zone non saturée, dans les sondages EL1 à EL3 à raison de 1 ou 2 essais par sondage. Les résultats de ces essais sont récapitulés dans le tableau suivant :

| Sondages                     | EL1                   | EL1                  | EL2                     | EL2                                            | EL3                                            | EL3                 | EL4                 |
|------------------------------|-----------------------|----------------------|-------------------------|------------------------------------------------|------------------------------------------------|---------------------|---------------------|
| Profondeur<br>de l'essai (m) | 1,5 à 3,5m            | 4,0 à 6,0m           | 1,5 à 3,5m              | 4,0 à 6,0m                                     | 1,5 à 3,5m                                     | 4,0 à 6,0m          | 4,0 à 6,0m          |
| Nature des<br>sols           | Argile ±.<br>sableuse | Craie ±.<br>sableuse | Argile ±.<br>graveleuse | Argile<br>graveleuse et<br>marnes<br>crayeuses | Argile<br>graveleuse et<br>marnes<br>crayeuses | Craie<br>argileuse  | Craie<br>argileuse  |
| Perméabilité<br>k (m/s)      | 6,0 E <sup>-8</sup>   | 2,4 E <sup>-7</sup>  | 1,0 E <sup>-7</sup>     | 4,1 E <sup>-7</sup>                            | 8,2 E <sup>-7</sup>                            | 2,6 E <sup>-7</sup> | 1,6 E <sup>-7</sup> |
| Perméabilité<br>k (m/h)      | < 0,22                | 0,86                 | 0,36                    | 1,4                                            | 2 ,9                                           | 0,94                | 0,58                |

<u>Tableau 3 : Caractéristiques des essais de perméabilité type NASBERG « Annexe 1 : PV des essais de perméabilité EL1 à EL4 type NASBERG et LEFANC de l'entreprise "Fondasol" »</u>

Lors d'une campagne de mesures le 17/12/2019, l'entreprise Fondasol a réalisé 3 essais d'infiltration type MATSUO, dans les sondages MAT1 et MAT2 à raison de 1 essai par sondage. Les résultats de ces essais sont présentés dans le tableau suivant :

| Sondages                     | MAT1                | MAT2                | MAT3                |
|------------------------------|---------------------|---------------------|---------------------|
| Profondeur de<br>l'essai (m) | 1,8 à 2,5m          | 1,4 à 2,4m          | 2,1 à 2,5m          |
| Nature des sols              | Argiles à silex     | Argiles à silex     | Marnes<br>crayeuses |
| Perméabilité k<br>(m/s)      | 4,5 E <sup>-7</sup> | 1,0 E <sup>-7</sup> | 1,3 E <sup>-6</sup> |
| Perméabilité k<br>(m/h)      | 1,62                | < 0,36              | 4,68                |

<u>Tableau 4 : Caractéristiques des essais de perméabilité type MATSUO « Annexe 2 : PV des essais de perméabilité MAT1 à MAT3 type MATSUO de l'entreprise "Fondasol" »</u>

Ces formations présentent une perméabilité faible : 10-6 à 10-7. Cette faible perméabilité limite considérablement les échanges entre les eaux superficielles et les eaux souterraines.

Dans ces conditions de perméabilité, l'infiltration potentielle des eaux se conjugue avec le phénomène d'épuration des eaux résultant de la lente percolation des flux au travers des formations géologiques. Dans ce contexte, au regard de la nature du sol, l'infiltration des eaux des bassins relève d'un processus très lent et ne génère pas d'impact en terme qualitatif ni quantitatif sur les eaux de nappe au droit du site.



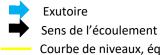
Par ailleurs, au vu des perméabilités mesurées faibles et dans une volonté de développement de projet le plus durable possible, la création de noues d'infiltration a été maximisée sur l'espace disponible.

Cependant, afin de respecter un temps de vidange acceptable pour une gestion pérenne des eaux pluviales, le bassin de rétention/infiltration BO1 collectant les eaux de toitures devra être équipé d'un débit de fuite vers le bassin de rétention étanche BO3 collectant le reste des surfaces du projet.



## DIAGNOSTIC DETAILLE DE LA SITUATION ACTUELLE

#### 3.1 Contexte topographique


La topographie du terrain traduit son appartenance au plateau de la Marne. Elle est toutefois plus calme que les vallonnements boisés environnants.

La topographie de notre parcelle présente un dénivelé de l'ordre de 1,6 m entre le point le plus bas à 131,20 m NGF, situé au niveau au nord et le point le plus haut à près de 132,85 m NGF, localisé à la pointe nord-ouest rue André Marie Ampère.

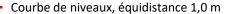

Le relief du terrain est marqué par une légère cuvette en direction de notre point bas de terrain. La déclivité du terrain présente une pente douce de 0,5 à 1,5 % vers ce point bas.



Figure 9: Topographie du site



Courbe de niveaux, équidistance 0,2 m





L'ensemble du projet appartient à un même bassin versant dont l'exutoire est le bassin versant n°3 de la ZAC Porte Sud

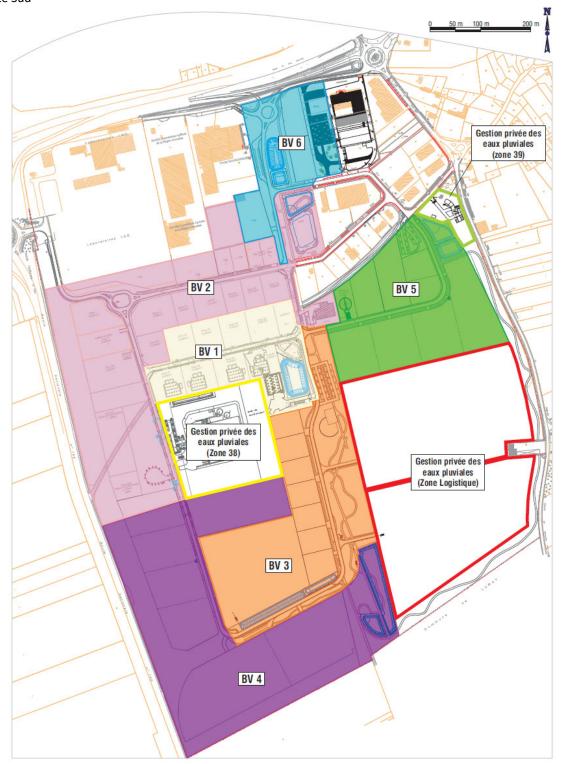
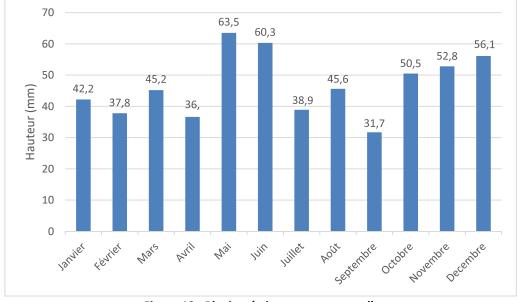



Figure 10 : Bassins versant hydraulique de la modification du DLE d'Août 2010

## 3.2 Contexte météorologique

L'aire d'étude, située en région Centre-Val de Loire, est soumise à un climat océanique tempéré avec quelques apparitions d'influences continentales ponctuelles, en particulier en fin de printemps et en été.




Les données relatives à la climatologie proviennent des observations et mesures réalisées par la station METEO FRANCE de Laons (28), station météo professionnelle en activité la plus proche du secteur d'étude et possédant des données.

Cette station est située à environ 15 km à l'ouest du site prévu pour le projet. La carte de répartition des précipitations en moyenne annuelle montre que les données sont représentatives du climat de la zone d'étude.



<u>Figure 11 : Localisation de la station météorologique de référence et répartition des précipitations annuelles</u>
<u>de la zone d'étude (Source : Météo France)</u>

La pluviométrie moyenne annuelle dans la zone d'étude est de l'ordre de 561,4 mm/an. Les données ci-après proviennent des statistiques sur la période 2006-2020 de la station de Laons (28). Les pluies sont réparties sur toute l'année et la pluviométrie moyenne mensuelle diffère peu entre le mois le plus sec et le mois le plus arrosé : 31,7 mm en septembre contre 63,5 mm en mai. En termes d'occurrence et d'intensité, les pluies sont plus fréquentes et peu intense en hiver (2 jours sur 3) tandis qu'en été elles sont plus rares (1 jours sur 3) mais plus intense (présence d'orages). Le record en 24 heures (entre 1976 et 2021) en Eure-et-Loir s'élève à 98 mm à l'occasion d'un orage violent le 04 juin 2018.



<u>Figure 12 : Pluviométrie moyenne annuelle</u> (Source : Météo France – Fiche climatologique de Laons – 1991 - 2020)



## 4 PRESCRIPTIONS REGLEMENTAIRES ET TECHNIQUES LIEES A LA GESTION DES EAUX PLUVIALES

#### 4.1 Prescriptions du SDAGE 2022-2027

Le SDAGE 2022-2027 a été approuvé le 23 mars 2022 et dispose des 5 orientations fondamentales (OF) suivantes:

- OF 1 pour un territoire vivant et résilient : des rivières fonctionnelles, des milieux humides préservés et une biodiversité en lien avec l'eau restaurée,
- OF 2 réduire les pollutions diffuses en particulier sur les aires d'alimentation de captages d'eau potable,
- OF 3 pour un territoire sain : réduire les pressions ponctuelles,
- OF 4 pour un territoire préparé : assurer la résilience des territoires et une gestion équilibrée de la ressource en eau face au changement climatique,
- OF 5 agir du bassin à la côte pour protéger et restaurer la mer et le littoral.

Les systèmes de gestion des eaux pluviales doivent remplir différents rôles en fonction des conditions pluviométriques depuis les pluies faibles jusqu'aux pluies exceptionnelles. Le SDAGE implique de s'intéresser à 3 niveaux de pluie :

#### La pluie courante (10 mm)

Le règlement du SDAGE prévoit que, « pour les nouveaux projets de construction, d'extension ou d'aménagement ou les opérations de renouvellement urbain, les eaux pluviales soient gérées à la source, au plus près de là où ces eaux tombent, sans raccordement direct ou indirect au réseau public, à minima pour les pluies courante (10 mm) et que les eaux pluviales et les eaux usées soient gérées de manière distincte ».

#### • La pluie moyenne à forte (T30 ans)

La neutralité hydraulique du projet du point de vue des eaux pluviales doit être le plus possible recherchée pour toute pluie de période de retour inférieure à 30 ans, sans que cette recherche s'opère au détriment de l'abattement des pluies courantes. Autrement dit, toute pluie de période de retour inférieure à 30 ans ne doit pas générer d'impact supplémentaire par rapport à la situation initiale.

#### • La pluie exceptionnelle (T100 ans)

Pour les pluies de périodes de retour supérieur à 30 ans (100 ans par exemple), les effets du projet doivent être analysés et anticipés.

Les orientations fondamentales du SDAGE Seine-Normandie sont déclinées en orientations puis en dispositions. Les dispositions (D) concernant la gestion des eaux pluviales sont listées ci-dessous :

- D2.1.7 lutter contre le ruissellement à l'amont des prises d'eau et des captages en zone karstique,
- D3.2.1 gérer les déversements dans les réseaux des collectivités et obtenir la conformité des raccordements,
- D3.2.2 limiter l'imperméabilisation des sols et favoriser la gestion à la source des eaux de pluie dans les documents d'urbanisme,
- D3.2.3 améliorer la gestion des eaux pluviales des territoires urbanisés,
- D3.2.4 édicter les principes d'une gestion à la source des eaux pluviales,
- D3.2.5 définir une stratégie d'aménagement du territoire qui prenne en compte tous les types d'évènements pluvieux,
- D3.2.6 viser la gestion des eaux pluviales à la source dans les aménagements ou les travaux d'entretien du bâti,
- D4.1.2 assurer la protection des zones d'infiltration des pluies et promouvoir les pratiques favorables à l'infiltration, dans le SAGE.

Plus particulièrement, la disposition D3.2.6 s'adresse aux aménageurs et s'applique donc au projet d'aménagement qui nous intéresse (cf. Tableau ci-dessous).





| Prescriptions extraites du SDAGE 2022-2027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mise en compatibilité avec le projet<br>d'aménagement                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prise en compte de la gestion des eaux pluviales dès le début de la conception du projet et tout au long de son exécution, en intégrant les compétences nécessaires en hydrologie et écologie dans l'équipe de conception.                                                                                                                                                                                                                                                                                                                                                                                                             | Le projet intègre la gestion des eaux pluviales par la<br>création d'un système de collecte et de stockage des<br>eaux pluviales avant rejet à un débit limité et<br>contrôlé vers la surface.                                                                           |
| Conception des projets permettant de gérer les eaux pluviales au plus près de là où elles tombent en favorisant l'infiltration de l'eau dans le sol (noues, bassins végétalisés à ciel ouvert, jardins de pluie,) ou les toitures végétalisées et en considérant l'eau pluviale comme une ressource pour l'alimentation des espaces verts. Pour ce faire, l'imperméabilisation des sols doit être limitée, les rejets en réseaux à minima pour des pluies courantes évités et les modalités de gestion intégrée des eaux pluviales envisagées pour le stockage et l'infiltration des eaux pluviales sur l'emprise du projet précisées. | Le projet prévoit la gestion des eaux pluviales de toiture au plus près de là où elles tombent en créant un bassin d'infiltration le long des entrepôts. Les premières eaux seront infiltrées puis un débit de fuite est prévu vers le réseau d'assainissement communal. |
| Vérifier que les travaux conduits sont réalisés dans le respect des objectifs de réduction des volumes d'eaux pluviales collectées.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Le projet prévoit la mise en œuvre d'un bassin de rétention permettant de stocker/réguler les eaux pluviales.  Le débit de fuite limité à 1L/s/ha vers le réseau communal permettra la réduction des volumes vers ce dernier.                                            |
| Débit spécifique issu de la zone aménagée proposé par le pétitionnaire, en l'absence d'objectifs précis fixés par une réglementation locale (Schéma d'Aménagement et de Gestion des eaux, règlement sanitaire départemental, Schéma régional d'aménagement, de développement durable et d'égalité des territoires, Schéma de Cohérence (Territoriale, Plan Local d'Urbanisme, zonages pluviaux, etc.) inférieur ou égal au débit spécifique du bassin versant intercepté par le périmètre du projet.                                                                                                                                   | Le projet prévoit la réduction du débit spécifique du bassin versant qu'il intercepte (cf. Comparaison du débit spécifique).                                                                                                                                             |
| Neutralité hydraulique du projet du point de vue des eaux pluviales pour toute pluie de période de retour inférieure à 30 ans, sans que cette recherche s'opère au détriment de l'abattement des pluies courantes.                                                                                                                                                                                                                                                                                                                                                                                                                     | Le système de gestion des eaux pluviales permettra<br>une neutralité hydraulique pour une pluie de période<br>de retour de 100 ans.                                                                                                                                      |
| Pour des pluies de période de retour supérieure à 30 ans ou si la neutralité hydraulique du projet n'est pas atteinte pour des pluies de période de retour inférieure à 30 ans, considérant les impacts du projet d'aménagement qui ne pourront pas être réduits, les effets du projet devront être analysés et anticipés (identification des axes d'écoulement, parcours de moindre dommage, identification des zones susceptibles d'être inondées).                                                                                                                                                                                  | Le projet prévoit une gestion des eaux pluviales de période de retour de 100 ans sans aucuns débordements prévus.                                                                                                                                                        |
| Végétaliser sans délai les terres mises à nu, si nécessaire pour les secteurs les plus à risque d'érosion (talus,) par projection de produit de type substrat nourricier et graines, fixant de ce fait les terres en place.                                                                                                                                                                                                                                                                                                                                                                                                            | Les terres mises à nu et non aménagées seront végétalisées (enherbement, plantation, etc.) le plus tôt possible en phase chantier.                                                                                                                                       |



#### 4.2 Principes d'assainissement des eaux pluviales

### 4.2.1 Assainissement des eaux pluviales – PLU et carte communale

Le projet est classé en zone urbaine « zone UXb ».

Les prescriptions des zones UX du PLU de la ville de VERNOUILLET approuvé le 26 septembre 2012 et modifié le 24 mars 2021, indiquent en termes de gestion des eaux pluviales :

- L'ensemble des prescriptions du règlement d'assainissement intercommunal relatives aux eaux pluviales doit être respecté,
- Le principe de gestion des eaux pluviales est le rejet au milieu naturel sur l'unité foncière, sans rejet dans les réseaux collectifs publics. Ce rejet au milieu naturel peut s'effectuer par infiltration dans le sol ou par écoulement dans des eaux superficielles. Dans tous les cas, des solutions limitant les quantités d'eaux de ruissellement ainsi que leur pollution devront être recherchées,
- Chaque parcelle devra disposer d'un système de stockage et d'infiltration permettant de gérer ces eaux pluviales pour une occurrence centennale,
- Tout ou partie des eaux pluviales ne sera accepté dans le réseau public que dans la mesure où l'usager démontrera que l'infiltration ou la rétention, sur son unité foncière, ne sont pas possibles ou insuffisantes, ou que le rejet en milieu naturel n'est pas possible,
- Cette évacuation sera obligatoirement séparée des eaux usées et raccordée par un débit de fuite limité au réseau public, par un branchement distinct de celui des eaux usées,
- En cas d'absence de réseau public d'eaux pluviales, l'usager devra réaliser une gestion intégrale des eaux pluviales sur son unité foncière, sans rejet vers le domaine public ni les propriétés voisines,
- Les surfaces imperméabilisées destinées au stationnement pourraient faire l'objet d'un prétraitement de débourbage déshuilage avant tout rejet dans un système de gestion des eaux pluviales.

#### 4.2.2 Principe général de gestion des eaux pluviales

Les eaux pluviales sont constituées :

- des eaux de toitures,
- des eaux de voiries,
- des eaux externes de ruissellement du terrain situé au sud de notre zone d'étude.

Ces eaux sont acheminées via des systèmes de collecte distincts pour les eaux pluviales de toiture et pour les eaux pluviales de voirie.

Les eaux de toitures seront rejetées sans prétraitement préalable dans le réseau de collecte puis acheminées vers un bassin d'infiltration paysager. Leur recyclage sera privilégié.

En revanche, le parc étant classé au titre des Installations Classées Pour l'Environnement (ICPE), il est prévu pour les eaux de ruissellement issues des surfaces imperméabilisées pouvant être polluées de façon chronique ou accidentelle (voiries et parking PL), la mise en place :

- d'un bassin de rétention étanche,
- d'ouvrages de traitement type déshuileurs-débourbeurs en aval du bassin de rétention,
- d'un système permettant le confinement des eaux en sortie pour retenir la pollution en cas d'accident avec une liaison au système de sécurité incendie afin d'être commandée à distance et ou manuellement. L'externalisation des eaux polluées stockées dans le bassin et la vidange du réseau devront être réalisées au plus vite par une société agréées afin de limiter la décantation des eaux polluées dans le bassin et les canalisations et permettre au réseau de retrouver sa fonction première de gestion des eaux pluviales.

Le projet considère les caractéristiques suivantes :

- Un volume de stockage calculé suivant la méthode des pluies permettant une prise en compte des caractéristiques locales des pluies,
- Le dimensionnement d'un ouvrage de gestion étanche des eaux pluviales pour une pluie de période de retour 100 ans,



- Un ouvrage de gestion d'infiltration des eaux pluviales exclusivement dimensionné pour une pluie courante 10mm à la parcelle,
- Un débit de vidange limité et contrôlé à 1 l/s/ha aménagé soit 11,5l/s au total.

Le schéma de principe de gestion des eaux pluviales est présenté ci-dessous :

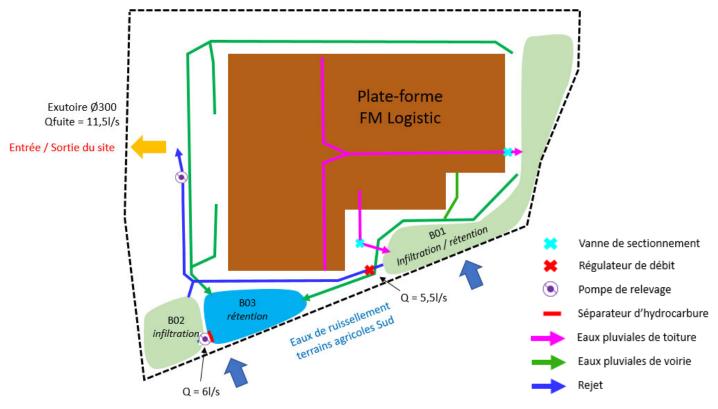



Figure 13 : Principe de gestion des eaux pluviales



## 5 DIMENSIONNEMENT DES OUVRAGES DE RETENTION

## 5.1 Hypothèses de dimensionnement

#### 5.1.1 Dimensionnement

Le dimensionnement est réalisé conformément à la doctrine régionale. Il est conforme aux prescriptions de la police de l'eau, aux dispositions du S.D.A.G.E Seine-Normandie 2022 2027 et au PLU modifié le 24 mars 2021.

#### 5.1.2 Pluie de référence et débit de fuite

Les prescriptions du dossier loi sur l'eau de la ZAC Porte Sud demandent un niveau de protection vicennal, mais le PLU modifié le 24 mars 2021 exige une protection centennale. Afin d'être conforme à la réglementation, le dispositif de rétention est dimensionné pour une période de retour 100 ans, tandis que la pluie courante est gérée à la parcelle.

Il est à noter que la norme NF-EN 752-2 « évacuation des EP des bâtiments » prévoit un dimensionnement de niveau :

- décennal pour les zones rurales,
- vicennal pour les zones résidentielles,
- trentennal pour les centres des villes et les zones industrielles et commerciales.

Une protection supplémentaire relève du choix du maître d'ouvrage.

Un débit de fuite vers le bassin existant de la ZAC sera au maximum de 1 l/s/ha de surface aménagée.

Un séparateur à hydrocarbures est dimensionné pour une pluie d'une période de retour de 10 ans.

#### 5.1.3 Coefficients de ruissellement

Les coefficients de ruissellement appliqués à une surface permettent de déterminer les volumes d'eau ruisselés sur cette surface pour des évènements pluvieux donnés.

Les coefficients de ruissellement suivants et retenus sont issus du PLU :

| Type de surface                           | Toitures | Voiries,<br>parking | Bassin de<br>rétention | Espaces<br>verts | Cultures | Evergreen |
|-------------------------------------------|----------|---------------------|------------------------|------------------|----------|-----------|
| Coefficient<br>d'imperméabilité<br>retenu | 0,95     | 0,90                | 1,00                   | 0,10             | 0,15     | 0,60      |

Tableau 5 : Coefficient de ruissellement



## 5.2 Analyse hydrologique et évaluation des surfaces imperméabilisées

La figure ci-dessous représente les eaux issues du bassin versant amont situé en partie sud du site qui sont interceptées par l'emprise du projet :

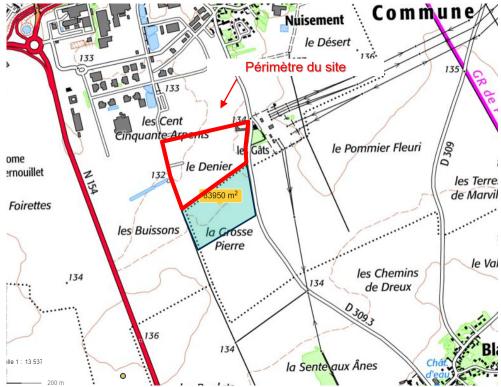



Figure 14 : Bassin versant amont intercepté par l'emprise du projet

La superficie supplémentaire a été déterminée à l'aide des profils altimétriques issus de la source « geoportail », c.f. *Annexe 3 : Profils altimétriques - source "Geoportail"*Celle-ci atteint 84 000 m². La surface totale à prendre en compte pour le dimensionnement du système de

L'ensemble des surfaces imperméabilisées en jeu pour chaque bassin versant est défini ci-dessous :

| Bassin versant | Occupation du sol          | Surface (m²) | Coefficient<br>d'imperméabilisation | Surface active (m²) |
|----------------|----------------------------|--------------|-------------------------------------|---------------------|
|                | Toitures                   | 46816        | 0,95                                | 44475,2             |
|                | Voiries et parking         | 28640        | 0,90                                | 25770,6             |
|                | Parking type<br>evergreen  | 1850         | 0,6                                 | 1110                |
| Duciat         | Bassin de<br>rétention B03 | 3555         | 1,0                                 | 3555                |
| Projet         | Espaces verts              | 22292        | 0,1                                 | 2229,2              |
|                | Noue d'infiltration<br>B01 | 8561         | 1,0                                 | 8561                |
|                | Noue d'infiltration<br>B02 | 3172         | 1,0                                 | 3172                |
|                | Total                      | 114880       | 0,77                                | 88873               |
| Bassin amont   | Cultures                   | 84000        | 0,15                                | 12600               |
| Surfac         | e totale                   | 198880       | 0,51                                | 101473              |

gestion des eaux pluviales est de 198880 m².



#### Tableau 6 : Répartition des surfaces d'occupation du sol du projet

Le coefficient d'apport retenu est de 51% et la surface active totale est de 101473 m² soit environ 10,1ha.

#### 5.3 Comparaison du débit spécifique

#### 5.3.1 Paramètres de calcul du débit spécifique à l'état initial

En intégrant la superficie du bassin versant amont collecté par l'opération, la surface du bassin versant concerné par le projet s'élève à 198880 m². Le Tableau ci-dessous récapitule les occupations du sol et les coefficients de ruissellement affectés à l'état initial

| Bassin versant | Occupation du sol | Surface (m²) | Coefficient de ruissellement | Surface active (m²) |
|----------------|-------------------|--------------|------------------------------|---------------------|
|                | Cultures          | 114880       | 0,15                         | 17232               |
| Bassin amont   | Cultures          | 84000        | 0,15                         | 12600               |
| Surfac         | e totale          | 198880       | 0,15                         | 29832               |

Tableau 7 : Répartition des surfaces d'occupation du sol à l'état initial

Le coefficient de ruissellement retenu est de 15 % et la surface active totale est de 29 832 m2 soit 2,98 ha.

#### 5.3.2 Estimation du débit spécifique à l'état initial

Le débit spécifique du bassin versant intercepté par le projet est estimé grâce à la méthode de Caquot et des coefficients de Montana de la station Météo-France de CHARTRES.

Les débits spécifiques en fonction des périodes de retour de la pluie de 10, 30 et 100 ans sont présentés dans le tableau ci-dessous.

| Débit        | Q <sub>10</sub> (I/s) | Q <sub>30</sub> (I/s) | Q <sub>100</sub> (I/s) |
|--------------|-----------------------|-----------------------|------------------------|
| Etat initial | 914                   | 1353                  | 1828                   |

<u> Tableau 8 : Débit spécifique à l'état initial Le débit à l'état initial</u>

Le débit à l'état initial est de 914 l/s pour une pluie décennale. Un débit de fuite projeté en sortie des bassins sera de 1 l/s/ha ce qui correspond à 11,5 l/s.

Avec la mise en place d'un bassin de rétention dimensionné pour une pluie de période de retour 100 ans, le débit issu du projet sera très inférieur au débit de pointe actuel.

### 5.4 Surface active

Le « Tableau 5 : Coefficient de ruissellement » détaille les coefficients de ruissellement pour les différentes typologies d'occupation du sol.

Ce coefficient exprime l'aptitude des sols au ruissellement, ici il est égal à 51%.

#### 5.5 Débit de vidange

Le débit de fuite autorisé vers le bassin de la ZAC est limité à 1 l/s/ha.

Ainsi, en considérant une surface parcellaire de 114880 m², soit 11,5 ha, le débit de vidange des ouvrages projetés sera limité à 11,5 l/s.



#### 5.6 Dimensionnement des ouvrages

Le dimensionnement du volume d'eaux pluviales à stocker est réalisé avec la méthode dite « des pluies » explicitée dans l'instruction technique interministérielle relative aux réseaux d'assainissement des agglomérations \_ Edition 1981.

#### 5.6.1 Temps de concentration

La formule de Kirpich, adaptée pour les petits bassins versants, permet d'estimer le temps de concentration à partir du chemin hydraulique maximum et de la pente du bassin versant

$$Tc = 0.0195 \times L^{0.77} \times p^{-0.385}$$

Avec

L = chemin hydraulique en m (parcourt le plus long depuis l'extrémité du BV jusqu'à l'exutoire)

p = pente moyenne en m/m

Sur la base d'une longueur de cheminement de l'ordre de 700m et d'une pente moyenne comprise entre 0,2 et 0,5%, nous obtenons un Tc = 25 min

#### 5.6.2 Intensité des pluies

La formule de MONTANA décrit la relation existant entre l'intensité, la durée et la fréquence des pluies mais également entre la hauteur, la durée et la fréquence des pluies. Elle s'exprime de la manière suivante :

$$It = a \times Tc^{-b}$$

$$ht = a \times Tc^{1-b}$$

Avec

It = Intensité durant le temps t en mm/min (ou mm/heure) tc = durée de la pluie équivalente au temps de concentration (en minutes ou en heures)

ht = Hauteur des précipitations en mm

a et b = coefficients de MONTANA

La durée des pluies retenue est de 30 minutes pour l'évaluation des débits de pointe

#### 5.6.3 Pluviométrie

Cette partie de l'étude a pour objet de définir les pluies de projet utilisées pour le diagnostic et pour la conception du réseau d'assainissement.

La station METEO FRANCE la plus proche disposant des coefficients de Montana est la station de Chartres. Cette station est située à environ 30 km au sud du site prévu pour le projet.

Le tableau ci-dessous indique les coefficients de Montana pour des pluies de durée de 6 à 30 minutes et de 30 minutes à 24 heures, et ce, pour différentes périodes de retour. Pour ces pas de temps, la taille de l'échantillon est au minimum de 36 années.

|                   | Pluie 6 minutes – 30 minutes |       | Pluie 30 minutes – 24h |       |
|-------------------|------------------------------|-------|------------------------|-------|
| Période de retour | а                            | b     | а                      | b     |
| 100 ans           | 7.783                        | 0.552 | 24.045                 | 0.865 |

Tableau 9 : Coefficient de Montana calculés à la station de Chartres (Source : Météo France 1982-2018)

Le tableau ci-après donne les pluies construites en fonction de leurs durées (de 15 minutes à 24 heures) pour les périodes de retour 30 ans et 100 ans, ainsi que le rapport entre la pluie centennale et la pluie trentennale :

| Hauteur (mm)      | Hauteur (mm) |         | R =             |
|-------------------|--------------|---------|-----------------|
| Durée de la pluie | 30 ans       | 100 ans | 100 ans /30 ans |
| 15 min            | 21,0         | 26,2    | 1.25            |
| 30 min            | 28,8         | 35,7    | 1.24            |
| 1 h               | 33,4         | 41,8    | 1.25            |



| 2 h  | 37,2 | 45,9 | 1.23 |
|------|------|------|------|
| 12 h | 49,1 | 58,4 | 1.19 |
| 24 h | 54,7 | 64,2 | 1.17 |

Tableau 10 : Hauteurs de pluie enregistrées à la station de Chartres (Source : Météo France)

Les pluviogrammes (hauteur d'eau tombée cumulée) correspondant à chacune de ces pluies sont présentés cidessous :

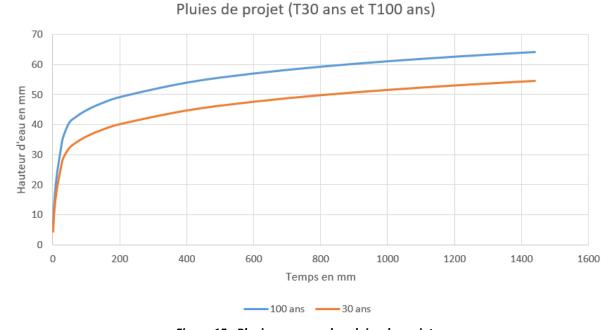



Figure 15 : Pluviogrammes des pluies de projet

L'aménagement entrainera une augmentation de l'imperméabilisation aggravant potentiellement, sans mise en œuvre des aménagements projetés, les phénomènes de ruissellement lors d'évènements pluvieux.

Avec l'augmentation du ruissellement, est associée celle du débit de pointe et la diminution du temps de concentration. Afin de maîtriser les impacts potentiellement négatifs de l'aménagement projeté sur le milieu naturel, le projet prévoit de gérer les eaux par un dispositif de rétention puis rejet à débit limité et contrôlé dans le réseau communal jusqu'à une pluie de période de retour de 100 ans.

## 6 GESTION DE LA PLUIE COURANTE

## 6.1 Principe général

Le projet doit au moins assurer une gestion des petites pluies avec « zéro rejet » à l'extérieur du projet (c'est-à-dire abattement des pluies inférieures à 10 mm) :

- Par de l'infiltration ;
- Par le phénomène d'évapotranspiration (végétalisation des espaces) ;
- Par leur utilisation (par exemple via de l'arrosage des espaces verts);
- Sans recourir à un rejet dans un réseau de collecte ni un rejet vers un cours d'eau.

Une cuve de récupération et de stockage des eaux pluviales sera mise en place.

L'intérêt de cette démarche est de pouvoir réutiliser l'eau de pluie pour des besoins ne nécessitant pas d'eau potable (lavage de sol, arrosage, sanitaires...).

La cuve pourra être dimensionnée en considérant un temps de vidange d'environ 5 jours, soit une semaine de travail. Ce volume stocké et réutilisé est compté en plus de la gestion de la pluie courante à la parcelle.

Pour le dimensionnement de la cuve, les données ci-après sont utilisées :

| Nombre de collaborateurs                                                   | 185<br>(260 jours ouvrés par an) |
|----------------------------------------------------------------------------|----------------------------------|
| Toiture raccordée à la cuve (m²) (B1 et B6)                                | 15 950                           |
| VTOTAL_CUVE (m³)                                                           | 20                               |
|                                                                            |                                  |
| Vestime_non_potable (m³/an) (Eau potable substituée par de l'eau de pluie) | 1081                             |

Tableau 11 : Données de dimensionnement de la cuve de récupération des EP

## 6.2 Dimensionnement des ouvrages de gestion de la pluie courante des eaux de toiture (BO1)

Les ouvrages de gestion de la pluie courante ont été dimensionnés au mieux afin que le volume stocké pour la pluie courante soit vidangé en maximum 72h.

| Ouvrage                              | B01                |
|--------------------------------------|--------------------|
| Débit rejet autorisé (l/s/ha)        | 0                  |
| Surface BV (ha)                      | 5.54               |
| Sactive (ha)                         | 5.30               |
| Qrejet (I/s)                         | 0                  |
| Vitesse d'infiltration (m/s)         | 10 E <sup>-6</sup> |
| Surface d'infiltration (m²)          | 4700               |
| Qfuite infiltration (m3/s)           | 0.0047             |
| Qfuite total (m3/s)                  | 0.0047             |
| Cr                                   | 0.96               |
| Pluie courante considérée (mm/m²/2h) | 10                 |
| Durée de la pluie (min)              | 120                |
| Intensité de la pluie (mm/h)         | 5                  |
| hfuite (mm)                          | 0.638              |
| Vrétention (m3)                      | 497                |
| Temps de vidange (h)                 | 29.3               |
| Temps de vidange (j)                 | 1.2                |

Tableau 12 : Temps de vidange des ouvrages de gestion de la pluie courante des eaux de toiture



La figure ci-dessous permet de visualiser le schéma du bassin d'infiltration (BO1) :



Figure 16 : Schéma de principe du bassin d'infiltration/rétention des eaux de toiture B01

## 6.3 Dimensionnement des ouvrages de gestion de la pluie courante des eaux de voirie (BO2)

Les ouvrages de gestion de la pluie courante ont été dimensionnés au mieux afin que le volume stocké pour la pluie courante soit vidangé en maximum 72h.

| Ouvrage                              | B02                |
|--------------------------------------|--------------------|
| Débit rejet autorisé (l/s/ha)        | 0                  |
| Surface BV (ha)                      | 14.35              |
| Sactive (ha)                         | 4.84               |
| Qrejet (I/s)                         | 0                  |
| Vitesse d'infiltration (m/s)         | 10 E <sup>-6</sup> |
| Surface d'infiltration (m²)          | 2580               |
| Qfuite infiltration (m3/s)           | 0.0026             |
| Qfuite total (m3/s)                  | 0.0026             |
| Cr                                   | 0.34               |
| Pluie courante considérée (mm/m²/2h) | 10                 |
| Durée de la pluie (min)              | 120                |
| Intensité de la pluie (mm/h)         | 5                  |
| hfuite (mm)                          | 0.384              |
| Vrétention (m3)                      | 466                |
| Temps de vidange (h)                 | 50.1               |
| Temps de vidange (j)                 | 2.1                |

<u>Tableau 13 : Temps de vidange des ouvrages de gestion de la pluie courante</u>

La figure ci-dessous permet de visualiser le schéma du bassin d'infiltration (BO2) :



Figure 17 : Schéma de principe du bassin d'infiltration des eaux de voirie B02



## 7 GESTION DE LA PLUIE D'OCCURRENCE CENTENNALE

## 7.1 Principe général

Comme évoqué précédemment, le caractère peu perméable du sous-sol du site ne permet pas d'assurer une infiltration suffisante pour gérer les eaux pluviales exclusivement via un ouvrage d'infiltration.

C'est pourquoi la gestion des eaux pluviales du site se fera via un ouvrage de rétention dimensionné pour stocker les eaux de ruissellement jusqu'à une pluie de retour 100 ans.

## 7.2 Gestion des eaux pluviales de toiture (BO1)

#### 7.2.1 Dimensionnement de l'ouvrage

Le tableau suivant présente le détail du calcul du volume de régulation :

| DLUVIONETDIE                          | a(10)                            |                                                           | 24,045  |                |
|---------------------------------------|----------------------------------|-----------------------------------------------------------|---------|----------------|
| PLUVIOMETRIE<br>Source : Météo France | b(10)                            |                                                           | 0,865   |                |
| Source . Meteo France                 | Durée de la pluie (T)            |                                                           | 1380    | min            |
|                                       | Surface drainée (S)              |                                                           | 55377   | m²             |
| PROJET                                | Coefficient de ruissellement (C) |                                                           | 95,8    | %              |
|                                       | Surface active (Sa)              | SxC                                                       | 53036,2 | m²             |
|                                       | Hauteur ruisselée (h)            | a(10) x T(1-b(10))                                        | 64      | mm             |
|                                       | Volume ruisselé (Vr)             | h x Sa / 1000                                             | 3384    | m³             |
| DIMENSIONNEMENT<br>DU BASSIN          | Débit de fuite (Qf)              | Correspondant à la<br>pompe prévue en sortie<br>de bassin | 5,5     | I/s            |
|                                       | Hauteur de fuite (H)             | 3600 x Qf x T / (60 x Sa)                                 | 8,6     | mm             |
|                                       | Volume de fuite (Vf)             | H x Sa / 1000                                             | 455     | m <sup>3</sup> |
|                                       | Volume utile du bassin (Vu)      | Vr - Vf                                                   | 2929    | m <sup>3</sup> |

Tableau 14 : Volumes du bassin de rétention/infiltration pour un événement pluvieux d'occurrence centennale

Le volume nécessaire est apprécié à partir de la méthode des pluies et donne les résultats suivants :

• Pluie de projet : 64 mm en 23 heures

• Surface active: 53036 m<sup>2</sup>

• Volume ruisselé pendant l'averse : 3384 m3

• Volume à stocker : 2929 m3

#### 7.2.2 Caractéristiques et géométries de l'ouvrage

| Caractéristiques                  | Valeur retenue |
|-----------------------------------|----------------|
| Bassin de rétention               |                |
| Volume utile de la structure (m³) | 7570           |
| Emprise de la structure (m²)      | 8560           |
| Profondeur (m)                    | ≈ 2,0 m / TN   |

<u>Tableau 15 : Caractéristiques et géométries de l'ouvrage de gestion des eaux pluviales de toiture</u>

La « Figure 16 : Schéma de principe du bassin d'infiltration/rétention des eaux de toiture B01Erreur ! Source du renvoi introuvable. » permet de visualiser le schéma de principe du bassin B01



## 7.3 Gestion des eaux pluviales de voirie (BO3)

#### 7.3.1 Dimensionnement de l'ouvrage

Le tableau suivant présente le détail du calcul du volume de régulation :

| PLUVIOMETRIE<br>Source : Météo France | a(10)                            |                                                           | 24,045  |                |
|---------------------------------------|----------------------------------|-----------------------------------------------------------|---------|----------------|
|                                       | b(10)                            |                                                           | 0,865   |                |
| PROJET                                | Durée de la pluie (T)            |                                                           | 1140    | min            |
|                                       | Surface drainée (S)              |                                                           | 143503  | m²             |
|                                       | Coefficient de ruissellement (C) |                                                           | 33,8    | %              |
| DIMENSIONNEMENT<br>DU BASSIN          | Surface active (Sa)              | SxC                                                       | 48436,8 | m²             |
|                                       | Hauteur ruisselée (h)            | a(10) x T(1-b(10))                                        | 62,2    | mm             |
|                                       | Volume ruisselé (Vr)             | h x Sa / 1000                                             | 3012    | m <sup>3</sup> |
|                                       | Débit de fuite (Qf)              | Correspondant à la<br>pompe prévue en sortie<br>de bassin | 6,0     | l/s            |
|                                       | Hauteur de fuite (H)             | 3600 x Qf x T / (60 x Sa)                                 | 8,5     | mm             |
|                                       | Volume de fuite (Vf)             | H x Sa / 1000                                             | 410     | m <sup>3</sup> |
|                                       | Volume utile du bassin (Vu)      | Vr - Vf                                                   | 2602    | m <sup>3</sup> |

Tableau 16 : Volumes du bassin de rétention pour un événement pluvieux d'occurrence centennale

Le volume nécessaire est apprécié à partir de la méthode des pluies et donne les résultats suivants :

• Pluie de projet : 62,2 mm en 19 heures

• Surface active: 48436,8 m<sup>2</sup>

Volume ruisselé pendant l'averse : 3012 m3

• Volume à stocker : 2602 m3

• Temps de vidange pour 2602 m3 = 120,5h soit ~5,0 jours

#### 7.3.2 Caractéristiques et géométries de l'ouvrage

| Caractéristiques                  | Valeur retenue |  |  |  |
|-----------------------------------|----------------|--|--|--|
| Bassin de rétention               |                |  |  |  |
| Volume utile de la structure (m³) | 9460           |  |  |  |
| Emprise de la structure (m²)      | 3555           |  |  |  |
| Profondeur (m)                    | ≈ 3,9 m / TN   |  |  |  |

Tableau 17 : Caractéristiques et géométries de l'ouvrage de gestion des eaux pluviales de toiture

La figure ci-dessous permet de visualiser le schéma du bassin de rétention :

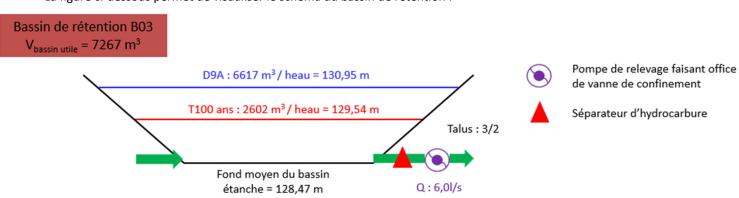



Figure 18 : Schéma de principe du bassin de rétention B03



## 7.4 Analyse des sur-stockages des bassins de rétention

| Bassin de rétention | Vpluie<br>courante<br>(m³) | Vcentennal<br>(m³) | Capacité de stockage du bassin (m³)<br>Sans débordement du bassin<br>ou sur chaussée | Vstockage –<br>Vcentennal<br>(m³) | Vstockage –<br>Vpluie courante<br>(m³) |
|---------------------|----------------------------|--------------------|--------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|
| BO1                 | 497                        | 2929               | 7570                                                                                 | 4641                              | 7073                                   |
| BO2                 | 466                        |                    | 2868                                                                                 |                                   | 2402                                   |
| BO3                 |                            | 2602               | 7267                                                                                 | 4665                              |                                        |

Tableau 18 : Estimation des capacités de sur-stockage des bassins de rétention

L'analyse de ces données montre que les volumes excédentaires générés pour un événement pluvieux d'occurrence centennale peuvent être stockés in situ dans les bassins.



## 8 SEPARATEUR A HYDROCARBURES

Le projet prévoit le prétraitement des eaux pluviales issues des voiries et parkings via un ouvrage de type débourbeursséparateurs à hydrocarbures, positionnés en aval du bassin de rétention BO3 recueillant ces eaux.

## 8.1 Hypothèse de calcul

Les séparateurs d'hydrocarbures sont dimensionnés pour traiter :

 20% du débit de pointe décennal estimé grâce à la méthode de Caquot et des coefficients de Montana.

Le volume minimum du séparateur est défini selon les critères suivants :

•  $V_{utile} = Fd \times 90 \times Q_{traitement}$ , où  $V_{utile}$  est exprimé en litres et  $Q_{traitement}$  en l/s.

## 8.2 Dimensionnement du séparateur d'hydrocarbures

Le séparateur d'hydrocarbures est dimensionné, afin de pouvoir traiter 20% des débits décennaux de ruissellement issus des voiries et de la part non-infiltrée des espaces verts.

Les eaux pluviales de toiture ne rejoignent pas le séparateur d'hydrocarbures. En effet, les eaux de toitures seront récupérées dans des réseaux d'eaux pluviales (EP) indépendants qui transiteront jusqu'au bassin d'infiltration sans nécessiter de prétraitement.

Chaque ouvrage sera doté d'un by-pass.

Chaque ouvrage sera également doté de deux compartiments : un compartiment « débourbeur » et un compartiment « séparateur à hydrocarbures ».

Etant donné que notre séparateur à hydrocarbures est positionné en aval du bassin de rétention, ce dernier aura la taille adaptée au rejet limité par la canalisation soit **6L/s.** 

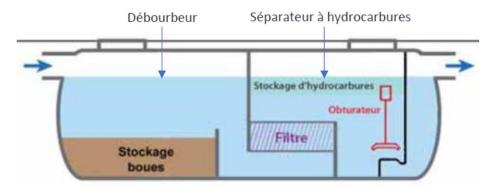



Figure 19 : Schéma de principe séparateur à hydrocarbures - Débourbeur

Le volume utile total de l'ouvrage de prétraitement (sous fil d'eau) est calculé en fonction de débit à traiter, de manière à ce que le temps de passage soit de 190 secondes et le volume utile du compartiment débourbeur (sous fil d'eau) doit respecter le ratio de 100 litres pour 1 l/s de débit traité.

| Bassin élémentaire       | Débit à traiter | Valuma total (I) | Volume         | Volume         |
|--------------------------|-----------------|------------------|----------------|----------------|
| considéré                | (L/s)           | Volume total (L) | débourbeur (L) | séparateur (L) |
| Eaux pluviales de voirie | 6,0             | 1140             | 600            | 540            |



#### 8.3 Recommandation

Chaque séparateur est équipé d'un regard de visite pour permettre son entretien. Les séparateurs comportent un système permettant la ventilation afin de ne pas concentrer les éventuels gaz.

Chaque appareil est vidangé au minimum une fois par an s'il n'y a pas de pollution accidentelle. Ils sont remis en eau après l'opération. Plus généralement, l'utilisateur doit contracter un protocole avec une société agréée et définir la périodicité de ces opérations de l'appareil avec la société agréée. L'enlèvement et l'élimination de ces déchets vers une filière de traitement par évapo-incinération seront notifiés par un bordereau établi par la société agréée.

En cas d'orage exceptionnel, il est nécessaire de vérifier l'ensemble des ouvrages et si nécessaire effectuer un nettoyage.

En cas de pollution accidentelle, les décanteurs des ouvrages doivent être nettoyés par une entreprise spécialisée.

Par ailleurs, conformément à l'arrêté du 23 janvier 2006 imposant la mise en application des normes européennes EN 858 pour les débourbeurs et séparateurs de liquides légers, les séparateurs installés dans le cadre du projet bénéficieront du marquage CE associé à ces nouvelles normes. De ce fait, les anciennes normes deviennent caduques (DIN 1999...). Enfin, il peut être exigé la marque NF (certification volontaire du fabriquant), qui vient en complément du marquage CE. Elle apporte des garanties de conformité, de performance de rejet, de sécurité fonctionnelle et de sécurité, de durabilité des matériaux, de résistance mécanique, etc.



## 9 DIMENSIONNEMENT DU VOLUME DE LA D9A

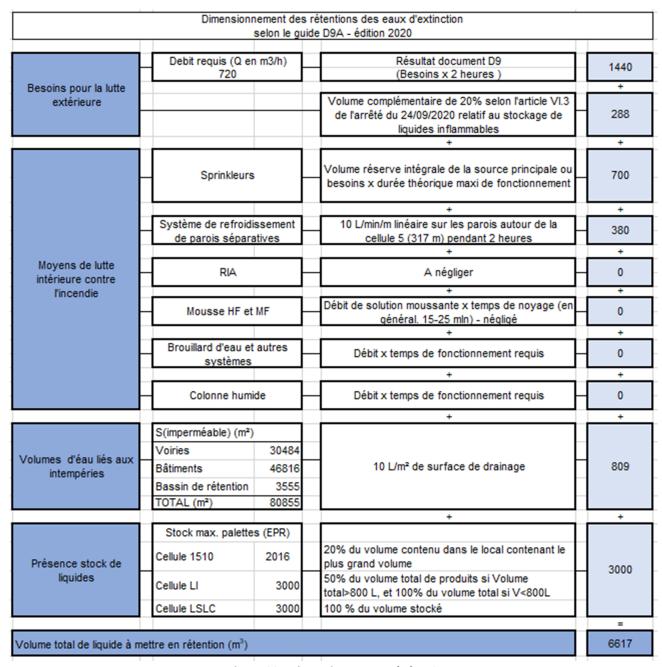



Figure 20 : Dimensionnement de la D9A

Dans ce cas le volume de rétention nécessaire pour les eaux d'incendie est de 6617 m3

La situation d'incendie est la seule qui peut mener au déversement de produits dans le bassin de rétention. En effet, en fonctionnement normal, il est considéré qu'au maximum 2 palettes peuvent chuter en même temps (suite à une erreur de manipulation de cariste). Pour gérer l'épanchement lié à ces deux palettes, des kits absorbants sont présents dans les cellules, et le personnel sait les utiliser. Par ailleurs, ces produits ne peuvent pas être incompatibles au vu de la gestion des incompatibilités : sur analyse de la FDS des produits, deux références incompatibles sont stockées avec une distance de sécurité entre elles.



## 10 CONCLUSION

### La gestion des eaux pluviales du site est réalisée au moyen d'un ouvrage tel que :

- Les eaux de ruissellement du site (voiries) sont acheminées dans le bassin de rétention étanche BO3 via des réseaux de collecte. En sortie de bassin, ces eaux passent par un séparateur à hydrocarbure avant de se rejeter dans le bassin d'infiltration BO2. Tandis que la collecte des eaux de ruissellement de toiture sera directement acheminée vers le bassin d'infiltration BO1. Le bassin de rétention disposera d'un rejet à débit limité de 6l/s et le bassin d'infiltration disposera d'un rejet à débit limité de 5,5l/s ; soit un total de 11,5l/s.
- En sortie des bassins d'infiltration BO1 et BO2, le fil d'eau des rejets sera calé au-dessus du niveau d'eau des pluies courantes, permettant ainsi l'acheminement des eaux de pluie d'occurrence centennale vers le bassin de la ZAC.
- Les eaux d'incendie seront dirigées vers le bassin de rétention étanche BO3. Les eaux d'extinction d'un incendie représentent une pollution. Cette pollution est confinée et ne peut rejoindre le milieu naturel. Pour ce faire, une pompe de relevage faisant office de vanne de barrage sera mise en place en sortie de bassin afin de pouvoir confiner ces eaux. Afin d'éviter que des eaux d'incendie ne se trouvent dans le bassin d'infiltration, des vannes de barrage seront mis en œuvre sur le réseau d'eaux pluviales de toiture en entrée de bassin d'infiltration.

La pompe de relevage ainsi que les vannes installées sur les réseaux d'eaux pluviales seront automatisées avec une liaison au système de sécurité incendie afin d'être commandées à distance et ou manuellement pour être fermées dès le lancement d'alerte. L'externalisation des eaux polluées stockées dans le bassin et la vidange du réseau devront être réalisées au plus vite par une société agréé afin de limiter la décantation des eaux polluées dans le bassin et les canalisations et permettre au réseau de retrouver sa fonction première de gestion des eaux pluviales.

### Ouvrage connexe:

- Pompe de relevage
- Régulateur de débit
- Débourbeur / séparateur à hydrocarbures
- Vannes de barrage

## Prise en compte du volume de rétention D9A :

Le bassin de rétention des eaux pluviales de voiries doit pouvoir stocker également les eaux d'incendie en cas de feu sur le site.

Dans cette note de calculs, nous avons calculé le volume nécessaire aux eaux d'incendie qui sont acheminées vers le bassin de rétention BO3. Ce bassin de rétention a deux fonctions la rétention des eaux d'intempéries et d'incendie, pour le dimensionner nous prenons le volume prédominant.

C'est le volume lié aux eaux d'extinction d'incendie qui devra pouvoir être stocké soit 6617 m3.

Enfin afin de respecter le débit de rejet qui est de 1l/s/ha, le projet disposera à proximité du raccordement sur le réseau communal d'une pompe de relevage calibrée à 11,5l/s.

Les équipements installés (pompe de relevage, régulateur de débit, débourbeur / séparateur à hydrocarbures et vannes de barrage) seront vérifiés et entretenus par une société agréée au minimum 1 fois par an. Au-delà de l'entretien annuel, ces équipements sont également composés d'un signal d'alarme en cas de disfonctionnement afin que l'on puisse intervenir le plus rapidement possible.



## 11 ANNEXES

fondasel

Lefranc\_Nasberg v2.98

## ESSAI D'INFILTRATION A CHARGE VARIABLE EN FORAGE OUVERT

réalisé conformément à la norme NF EN ISO 22282-2 FTQ 233-3-C

TYPE DE L'ESSAI : Nasberg

MODE OPERATOIRE : Par injection

DEBIT D'ESSAI :

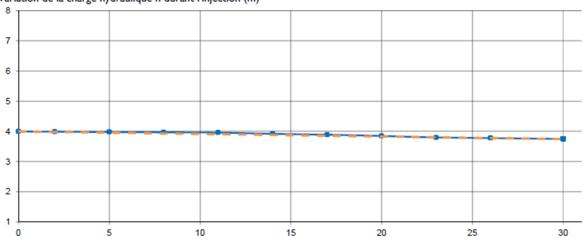
AFFAIRE N° : 44EN.19.0056

CHANTIER: Vernouillet

SONDAGE N°: ELI

DATE: 29/08/2019

PROFONDEUR DE L'ESSAI : de 1.50 à 3.50 m


LONGUEUR DE LA CAVITE D'ESSAI : L = 2.00 m

DIAMETRE DE LA CAVITE D'ESSAI : D = 0.083 m

ELANCEMENT DE LA CAVITE : L/D = 24.1

DIAMETRE DE LA SPHERE EQUIVALENTE : m = F/D = 39.1

Variation de la charge hydraulique h durant l'injection (m)



#### **OBSERVATIONS**

PHASE INJECTION NON EXPLOITABLE ( débit d'injection trop important)

Vérifié par: ROUSSEAU

## COEFFICIENT DE PERMEABILITE

temps (min)

PHASE D'INJECTION m/s

RETOUR A L'EQUILIBRE 6.0E-08 m/s

## PHASE I: INJECTION

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|-------------------------|-------------------------------|
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|-------------------------|-------------------------------|
| 0                       | 4.00                          |                         |                               |
| 2                       | 3.99                          |                         |                               |
| 5                       | 3.98                          |                         |                               |
| 8                       | 3.97                          |                         |                               |
| П                       | 3.96                          |                         |                               |
| 14                      | 3.92                          |                         |                               |
| 17                      | 3.89                          |                         |                               |
| 20                      | 3.85                          |                         |                               |
| 23                      | 3.80                          |                         |                               |
| 26                      | 3.78                          |                         |                               |
| 30                      | 3.75                          |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |



## **ESSAI D'INFILTRATION** A CHARGE VARIABLE **EN FORAGE OUVERT**

réalisé conformément à la norme NF EN ISO 22282-2 FTQ 233-3-C

TYPE DE L'ESSAI : Nasberg

MODE OPERATOIRE : Par injection

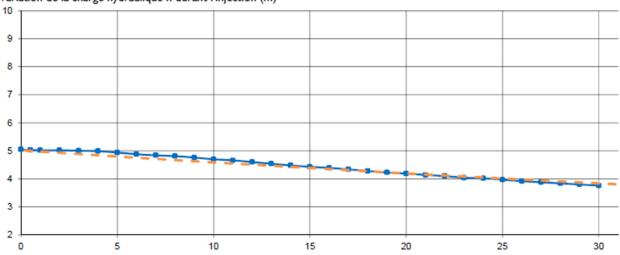
DEBIT D'ESSAI :

AFFAIRE N°: 44EN.19.0056

CHANTIER: Vernouillet

SONDAGE N°: ELI

DATE: 08/07/2019


PROFONDEUR DE L'ESSAI : de 4.00 à 6.00 m

2.00 m LONGUEUR DE LA CAVITE D'ESSAI :

DIAMETRE DE LA CAVITE D'ESSAI : D= 0.083 m

ELANCEMENT DE LA CAVITE : UD = 24.1 DIAMETRE DE LA SPHERE EQUIVALENTE :

Variation de la charge hydraulique h durant l'injection (m)



### **OBSERVATIONS**

PHASE INJECTION NON EXPLOITABLE ( débit d'injection trop important)

**ROUSSEAU** Vérifié par:

## temps (min) **COEFFICIENT DE PERMEABILITE**

m = F/D =

39.1

PHASE D'INJECTION

m/s

2.4E-07 m/s **RETOUR A L'EQUILIBRE** 

### PHASE I: INJECTION

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|-------------------------|-------------------------------|
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|
| 0                       | 5.05                          |
| 0.5                     | 5.03                          |
| 1                       | 5.02                          |
| 2                       | 5.02                          |
| 3                       | 5.00                          |
| 4                       | 4.99                          |
| 5                       | 4.94                          |
| 6                       | 4.88                          |
| 7                       | 4.84                          |
| 8                       | 4.81                          |
| 9                       | 4.76                          |
| 10                      | 4.70                          |
| - 11                    | 4.66                          |
| 12                      | 4.60                          |
| 13                      | 4.54                          |
| 14                      | 4.48                          |

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|
| 15                      | 4.43                          |
| 16                      | 4.39                          |
| 17                      | 4.34                          |
| 18                      | 4.28                          |
| 19                      | 4.23                          |
| 20                      | 4.19                          |
| 21                      | 4.14                          |
| 22                      | 4.10                          |
| 23                      | 4.04                          |
| 24                      | 4.02                          |
| 25                      | 3.97                          |
| 26                      | 3.92                          |
| 27                      | 3.88                          |
| 28                      | 3.84                          |
| 29                      | 3.80                          |
| 30                      | 3.76                          |





# ESSAI D'INFILTRATION A CHARGE VARIABLE EN FORAGE OUVERT

réalisé conformément à la norme NF EN ISO 22282-2 FTQ 233-3-C

Par injection

TYPE DE L'ESSAI : Nasberg

DEBIT D'ESSAI :

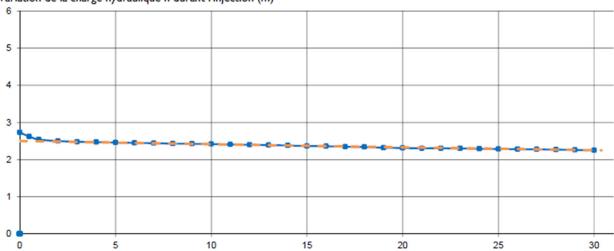
MODE OPERATOIRE:

AFFAIRE N°: 44EN.19.0056

CHANTIER: Vernouillet

SONDAGE N°: EL2

DATE: 29/08/2019


PROFONDEUR DE L'ESSAI : de 1.50 à 3.50 m

LONGUEUR DE LA CAVITE D'ESSAI : L = 2.00 m

DIAMETRE DE LA CAVITE D'ESSAI : D = 0.083 m

ELANCEMENT DE LA CAVITE : L/D = 24.1DIAMETRE DE LA SPHERE EQUIVALENTE : m = F/D = 39.1

Variation de la charge hydraulique h durant l'injection (m)



### **OBSERVATIONS**

PHASE INJECTION NON EXPLOITABLE ( débit d'injection trop important)

Vérifié par: ROUSSEAU

temps (min)

# COEFFICIENT DE PERMEABILITE PHASE D'INJECTION m/s

RETOUR A L'EQUILIBRE 1.0E-07 m/s

## PHASE I: INJECTION

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|-------------------------|-------------------------------|
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |

| THASE 2 : RETOOK A LEQU |                               |                        |  |
|-------------------------|-------------------------------|------------------------|--|
| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigé<br>(min) |  |
| 0                       | 2.73                          | 15                     |  |
| 0.5                     | 2.62                          | 16                     |  |
| _                       | 2.54                          | 17                     |  |
| 2                       | 2.50                          | 18                     |  |
| 3                       | 2.48                          | 19                     |  |
| 4                       | 2.47                          | 20                     |  |
| 5                       | 2.46                          | 21                     |  |
| 6                       | 2.45                          | 22                     |  |
| 7                       | 2.44                          | 23                     |  |
| 8                       | 2.43                          | 24                     |  |
| 9                       | 2.43                          | 25                     |  |
| 10                      | 2.42                          | 26                     |  |
| 11                      | 2.41                          | 27                     |  |
| 12                      | 2.40                          | 28                     |  |
| 13                      | 2.39                          | 29                     |  |
| 14                      | 2.38                          | 30                     |  |
|                         |                               |                        |  |

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|
| 15                      | 2.37                          |
| 16                      | 2.36                          |
| 17                      | 2.35                          |
| 18                      | 2.34                          |
| 19                      | 2.32                          |
| 20                      | 2.31                          |
| 21                      | 2.31                          |
| 22                      | 2.31                          |
| 23                      | 2.30                          |
| 24                      | 2.29                          |
| 25                      | 2.29                          |
| 26                      | 2.28                          |
| 27                      | 2.28                          |
| 28                      | 2.27                          |
| 29                      | 2.26                          |
| 30                      | 2.25                          |





# A CHARGE VARIABLE EN FORAGE OUVERT

réalisé conformément à la norme NF EN ISO 22282-2 FTQ 233-3-C

TYPE DE L'ESSAI : Nasberg

MODE OPERATOIRE : Par injection

DEBIT D'ESSAI:

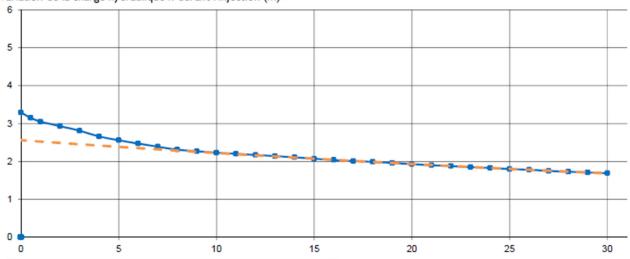
AFFAIRE N°: 44EN.19.0056

CHANTIER: Vernouillet

SONDAGE N°: EL2

DATE: 29/08/2019

PROFONDEUR DE L'ESSAI : de 4.00 à 6.00 m


LONGUEUR DE LA CAVITE D'ESSAI : L = 2.00 m

DIAMETRE DE LA CAVITE D'ESSAI : D = 0.083 m

ELANCEMENT DE LA CAVITE : L/D = 24.1

DIAMETRE DE LA SPHERE EQUIVALENTE : m = F/D = 39.1

Variation de la charge hydraulique h durant l'injection (m)



## **OBSERVATIONS**

PHASE INJECTION NON EXPLOITABLE ( débit d'injection

trop important)

Vérifié par: ROUSSEAU

# temps (min) COEFFICIENT DE PERMEABILITE

PHASE D'INJECTION m/s

RETOUR A L'EQUILIBRE 4.1E-07 m/s

## PHASE I: INJECTION

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|-------------------------|-------------------------------|
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|-------------------------|-------------------------------|
| 0                       | 3.29                          | 15                      | 2.07                          |
| 0.5                     | 3.15                          | 16                      | 2.04                          |
| 1                       | 3.05                          | 17                      | 2.01                          |
| 2                       | 2.93                          | 18                      | 1.99                          |
| 3                       | 2.81                          | 19                      | 1.96                          |
| 4                       | 2.66                          | 20                      | 1.93                          |
| 5                       | 2.56                          | 21                      | 1.90                          |
| 6                       | 2.47                          | 22                      | 1.88                          |
| 7                       | 2.39                          | 23                      | 1.85                          |
| 8                       | 2.31                          | 24                      | 1.83                          |
| 9                       | 2.27                          | 25                      | 1.80                          |
| 10                      | 2.23                          | 26                      | 1.78                          |
| - 11                    | 2.20                          | 27                      | 1.75                          |
| 12                      | 2.17                          | 28                      | 1.73                          |
| 13                      | 2.14                          | 29                      | 1.71                          |
| 14                      | 2.11                          | 30                      | 1.69                          |



fondasşl

Lefranc\_Nasberg v2.98

# A CHARGE VARIABLE EN FORAGE OUVERT

réalisé conformément à la norme NF EN ISO 22282-2 FTQ 233-3-C

TYPE DE L'ESSAI : Nasberg

MODE OPERATOIRE : Par injection

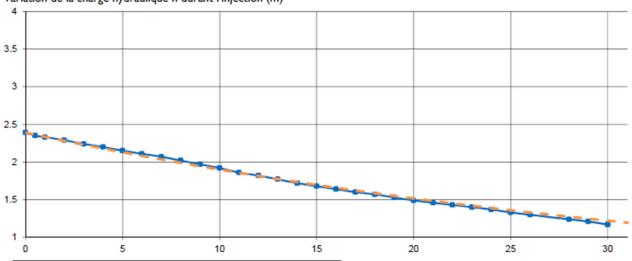
DEBIT D'ESSAI :

AFFAIRE N°: 44EN.19.0056

CHANTIER: Vernouillet

SONDAGE N°: EL3

DATE: 29/08/2019


PROFONDEUR DE L'ESSAI : de 1.50 à 3.50 m

LONGUEUR DE LA CAVITE D'ESSAI : L = 2.00 m

DIAMETRE DE LA CAVITE D'ESSAI : D = 0.083 m

ELANCEMENT DE LA CAVITE : L/D = 24.1DIAMETRE DE LA SPHERE EQUIVALENTE : m = F/D = 39.1

Variation de la charge hydraulique h durant l'injection (m)



### **OBSERVATIONS**

PHASE INJECTION NON EXPLOITABLE ( débit d'injection trop important)

Vérifié par: ROUSSEAU

# temps (min) COEFFICIENT DE PERMEABILITE

PHASE D'INJECTION

m/s

RETOUR A L'EQUILIBRE 8.2E-07 m/s

## PHASE I: INJECTION

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|-------------------------|-------------------------------|
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |
|                         |                               |                         |                               |

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|
| 0                       | 2.39                          |
| 0.5                     | 2.35                          |
| 1                       | 2.33                          |
| 2                       | 2.29                          |
| 3                       | 2.24                          |
| 4                       | 2.20                          |
| 5                       | 2.15                          |
| 6                       | 2.11                          |
| 7                       | 2.07                          |
| 8                       | 2.02                          |
| 9                       | 1.97                          |
| 10                      | 1.92                          |
| П                       | 1.86                          |
| 12                      | 1.82                          |
| 13                      | 1.77                          |
| 14                      | 1.72                          |

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|
| 15                      | 1.68                          |
| 16                      | 1.64                          |
| 17                      | 1.60                          |
| 18                      | 1.57                          |
| 19                      | 1.53                          |
| 20                      | 1.49                          |
| 21                      | 1.46                          |
| 22                      | 1.43                          |
| 23                      | 1.40                          |
| 24                      | 1.37                          |
| 25                      | 1.33                          |
| 26                      | 1.30                          |
| 28                      | 1.24                          |
| 29                      | 1.21                          |
| 30                      | 1.17                          |
|                         |                               |



## **TEST DE PERMEABILITE EN FORAGE OUVERT**

réalisé conformément à la norme NF EN ISO 22282-2 FTQ 233-3-C

TYPE DE L'ESSAI : Lefranc

MODE OPERATOIRE: Par injection

1.3 l/min DEBIT D'ESSAI :

2.10E-05 m<sup>3</sup>/s AFFAIRE N°: 44EN.19.0056

CHANTIER: Vernouillet

SONDAGE N°: EL3

FACTEUR DE FORME :

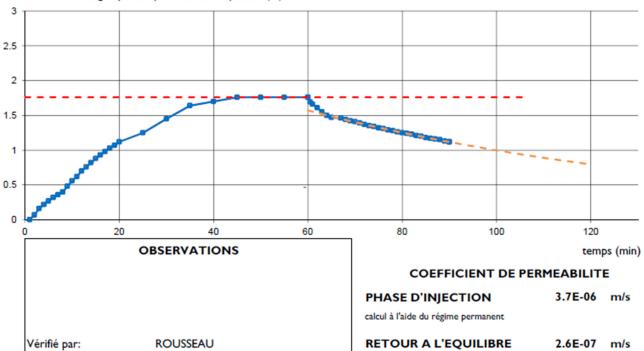
29/08/2019 DATE:

PROFONDEUR DE L'ESSAI : de 4.00 6.00

LONGUEUR DE LA CAVITE D'ESSAI : 2.00 m

DIAMETRE DE LA CAVITE D'ESSAI : D = 0.083 m

L/D =


m = F/D =

39.1

24.1 ELANCEMENT DE LA CAVITE :

PROFONDEUR DE LA NAPPE :  $h_0 =$ 4.60 m

Variation de la charge hydraulique h durant l'injection (m)



charge hydraulique h(m) 1.28 1.33 1.38 1.43 1.47 1.52 1.65 1.85 2.04 2.10 2.16 2.16 2.16 2.16

## PHASE I: INJECTION

Vérifié par:

**ROUSSEAU** 

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigée<br>(min) |
|-------------------------|-------------------------------|-------------------------|
| 0                       | 0.36                          | 15                      |
| 1                       | 0.40                          | 16                      |
| 2                       | 0.47                          | 17                      |
| 3                       | 0.56                          | 18                      |
| 4                       | 0.62                          | 19                      |
| 5                       | 0.67                          | 20                      |
| 6                       | 0.72                          | 25                      |
| 7                       | 0.76                          | 30                      |
| 8                       | 0.80                          | 35                      |
| 9                       | 0.88                          | 40                      |
| 10                      | 0.96                          | 45                      |
| 11                      | 1.02                          | 50                      |
| 12                      | 1.10                          | 55                      |
| 13                      | 1.16                          | 60                      |
| 14                      | 1.22                          |                         |
|                         |                               |                         |

## PHASE 2: RETOUR A L'EQUILIBRE

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corr<br>(min) |
|-------------------------|-------------------------------|---------------------|
| 0                       | 1.76                          |                     |
| 0.5                     | 1.69                          |                     |
|                         | 1.66                          |                     |
| 2                       | 1.61                          |                     |
| 3                       | 1.55                          |                     |
| 4                       | 1.50                          |                     |
| 5                       | 1.47                          |                     |
| 7                       | 1.46                          |                     |
| 8                       | 1.44                          |                     |
| 9                       | 1.42                          |                     |
| 10                      | 1.41                          |                     |
| Ξ                       | 1.39                          |                     |
| 12                      | 1.37                          |                     |
| 13                      | 1.35                          |                     |
| 14                      | 1.34                          |                     |
| 15                      | 1.32                          |                     |

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) |
|-------------------------|-------------------------------|
| 16                      | 1.31                          |
| 17                      | 1.29                          |
| 18                      | 1.28                          |
| 19                      | 1.26                          |
| 20                      | 1.25                          |
| 21                      | 1.24                          |
| 22                      | 1.23                          |
| 23                      | 1.21                          |
| 24                      | 1.20                          |
| 25                      | 1.18                          |
| 26                      | 1.17                          |
| 27                      | 1.16                          |
| 28                      | 1.15                          |
| 29                      | 1.13                          |
| 30                      | 1.12                          |
|                         |                               |

2.6E-07 m/s

Etude hydraulique – Gestion des eaux pluviales



## **TEST DE PERMEABILITE EN FORAGE OUVERT**

réalisé conformément à la norme NF EN ISO 22282-2 FTQ 233-3-C

TYPE DE L'ESSAI : Lefranc

MODE OPERATOIRE: Par injection

DEBIT D'ESSAI :

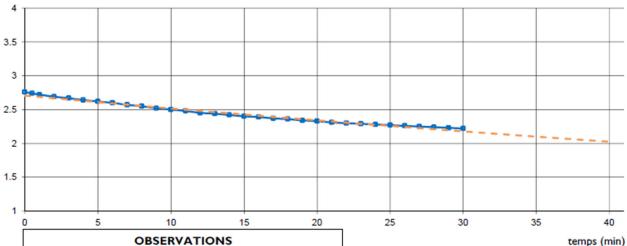
AFFAIRE N°: 44EN.19.0056

CHANTIER: Vernouillet

SONDAGE N°:

30/08/2019 DATE:

PROFONDEUR DE L'ESSAI : de 4.00 à 6.00


LONGUEUR DE LA CAVITE D'ESSAI : 2.00 m L =

D = 0.083 mDIAMETRE DE LA CAVITE D'ESSAI :

ELANCEMENT DE LA CAVITE : L/D = 24.1 m = F/D =FACTEUR DE FORME : 39.1

PROFONDEUR DE LA NAPPE :

## Variation de la charge hydraulique h durant l'injection (m)



### **OBSERVATIONS**

PHASE INJECTION NON EXPLOITABLE ( débit d'injection trop important)

**ROUSSEAU** Vérifié par:

#### COEFFICIENT DE PERMEABILITE

 $h_0 =$ 

5.55 m

PHASE D'INJECTION

RETOUR A L'EQUILIBRE 1.6E-07 m/s

## PHASE I: INJECTION

| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | hydraulique (min) |  |  |  |  |
|-------------------------|-------------------------------|-------------------|--|--|--|--|
|                         |                               |                   |  |  |  |  |
|                         |                               |                   |  |  |  |  |
|                         |                               |                   |  |  |  |  |
|                         |                               |                   |  |  |  |  |
|                         |                               |                   |  |  |  |  |
|                         |                               |                   |  |  |  |  |

|                         | -                             |                         | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |  |  |
|-------------------------|-------------------------------|-------------------------|------------------------------------------|--|--|
| durée corrigée<br>(min) | charge<br>hydraulique<br>h(m) | durée corrigée<br>(min) | charge<br>hydraulique<br>h(m)            |  |  |
| 0                       | 2.76                          | 15                      | 2.40                                     |  |  |
| 0.5                     | 2.74                          | 16                      | 2.39                                     |  |  |
| _                       | 2.72                          | 17                      | 2.37                                     |  |  |
| 2                       | 2.69                          | 18                      | 2.36                                     |  |  |
| 3                       | 2.67                          | 19                      | 2.34                                     |  |  |
| 4                       | 2.64                          | 20                      | 2.33                                     |  |  |
| 5                       | 2.62                          | 21                      | 2.31                                     |  |  |
| 6                       | 2.60                          | 22                      | 2.30                                     |  |  |
| 7                       | 2.57                          | 23                      | 2.29                                     |  |  |
| 8                       | 2.55                          | 24                      | 2.28                                     |  |  |
| 9                       | 2.52                          | 25                      | 2.27                                     |  |  |
| 10                      | 2.50                          | 26                      | 2.26                                     |  |  |
| П                       | 2.48                          | 27                      | 2.25                                     |  |  |
| 12                      | 2.45                          | 28                      | 2.24                                     |  |  |
| 13                      | 2.44                          | 29                      | 2.23                                     |  |  |
| 14                      | 2.42                          | 30                      | 2.22                                     |  |  |

Annexe 1 : PV des essais de perméabilité EL1 à EL4 type NASBERG et LEFANC de l'entreprise "Fondasol"



fondas@l

## COMPTE RENDU D'ESSAI MATSUO

MAT 1

IMPORT 1

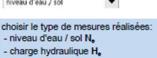
05/12/2019 09:30 05/12/2019 12:45 Arglie à silex Broulliard

AFFAIRE N°: 44EN.19.0108

CHANTIER: VERNOUILLET

Thibaud CHABAUD OPERATEUR

| Sondage :               | MAT 1  |
|-------------------------|--------|
| Géolocalisation :       |        |
| Longueur L (m):         | 1.10   |
| Largeur B (m):          | 0.30   |
| Profondeur P (m):       | 2.50   |
| Date début saturation : | 05/12/ |
| Date début essal :      | 05/12/ |
| Nature du sol :         | Arglie |
| Meteo :                 | Broull |
| Vent:                   |        |
| Température :           |        |
| Observations :          |        |
|                         | Dur    |
|                         | /mi    |


| IMPORT 2         |
|------------------|
| MAT 2            |
|                  |
| 1.20             |
| 0.30             |
| 2.40             |
| 05/12/2019 10:30 |
| 05/12/2019 13:30 |
| Arglie à silex   |
| Broulliard       |
|                  |
|                  |

| IMPORT 3         |
|------------------|
| MAT 3            |
|                  |
| 1.10             |
| 0.30             |
| 2.50             |
| 05/12/2019 11:15 |
| 05/12/2019 14:15 |
| Marnes calcaire  |
| Broulliard       |
|                  |
|                  |

| IMPOR | RT 4   |   | IMPOR | RT 5   | IMPOR | RT 6   |
|-------|--------|---|-------|--------|-------|--------|
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
|       |        |   |       |        |       |        |
| Durée | Mesure | 1 | Durée | Mesure | Durée | Mesure |
|       | 120000 |   |       | 120000 |       |        |

| P                  |
|--------------------|
| niveau d'eau / sol |
| choisir le type    |

| Durée | Mesure |
|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|
| (min) | (cm)   |
| 0     | 178.5  | 0     | 141.8  | 0     | 212.3  |       |        |       |        |       |        |
| 10    | 178.8  | 20    | 142.0  | 5     | 212.5  |       |        |       |        |       |        |
| 20    | 179.0  | 40    | 142.0  | 9     | 212.8  |       |        |       |        |       |        |
| 35    | 179.3  | 60    | 142.0  | 20    | 213.0  |       |        |       |        |       |        |
| 50    | 179.5  |       |        | 30    | 213.3  |       |        |       |        |       |        |
| 70    | 179.8  |       |        | 40    | 213.5  |       |        |       |        |       |        |
|       |        |       |        | 50    | 213.8  |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |
|       |        |       |        |       |        |       |        |       |        |       |        |

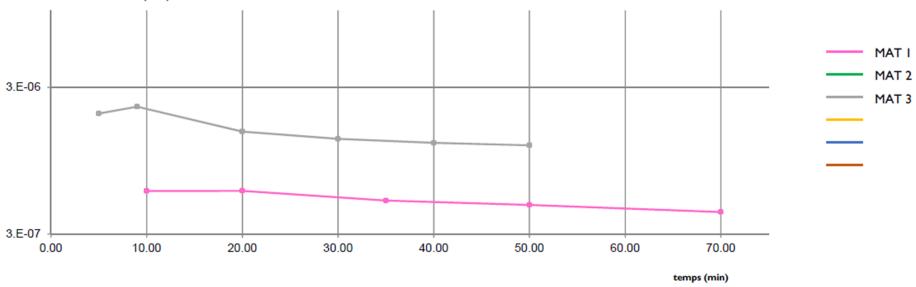


Rue de l'Europe - 57 370 PHALSBOURG - Tél : 03.87.23.12.39 - Télécopie : 03.87.24.26.97



COMPTE RENDU D'ESSAI MATSUO Matsuo v2.6

AFFAIRE N° : 44EN.19.0108


CHANTIER: VERNOUILLET

OPERATEUR Thibaud CHABAUD

#### **RESULTATS DES ESSAIS**

| N° ESSAI : | ESSAI: | DATE ESSAI: | PERMEABILITE | :   |
|------------|--------|-------------|--------------|-----|
| 1          | MAT I  | 05/12/2019  | 4.5E-07      | m/s |
| 2          | MAT 2  | 05/12/2019  | 1.0E-07      | m/s |
| 3          | MAT 3  | 05/12/2019  | 1.3E-06      | m/s |
|            |        |             |              |     |

## Perméabilité instantanée (m/s)



Annexe 2 : PV des essais de perméabilité MAT1 à MAT3 type MATSUO de l'entreprise "Fondasol"











Annexe 3 : Profils altimétriques - source "Geoportail"